16.02.2024

Физические свойства крахмала. Физические свойства крахмала Факторы, влияющие напроцесс клейстеризации крахмала


Целлюлоза, или клетчатка, - самый распространённый полисахарид в растительном мире. Содержание целлюлозы в древесине 50-70%, в хлопке - 98%. Основным структурным звеном являются остатки -D - глюкопиранозы, соединённые 1,4-гликозидными связями. Макромолекулы не имеют разветвлений, в них содержится от 2500 до 12 000 глюкозных остатков.

Макромолекулы имеют линейное строение, что обусловлено конфигурацией аномерного атома углерода (в -форме); дополнительную устойчивость линейным молекулам придают водородные связи внутри цепи (между атомом кислорода пиранозного кольца и гидроксогруппой второго углеродного атома).

Макромолекулы расположены параллельно друг другу и связаны между собой межмолекулярными водородными связями, образуя волокна. В связи с этим целлюлоза обладает высокой механической прочностью и служит материалом для построения клеточных стенок растений.

Целлюлоза в воде не растворяется и набухает только в растворах щелочей. Она не расщепляется обычными ферментами желудочно-кишечного тракта, но она является необходимым балластным веществом. В желудке жвачных животных (коров, овец) содержатся микроорганизмы, расщепляющие целлюлозу, поэтому жвачные животные могут питаться продуктами, содержащими целлюлозу.

Целлюлоза широко применяется в производстве этанола, искусственного волокна, фотоплёнок, взрывчатых веществ.

При гидролизе целлюлозы с помощью водного раствора серной кислоты получают водный раствор глюкозы, который после удаления сульфат-ионов используют для получения этилового спирта путём спиртового брожения (гл. 7.1.3).

Искусственные волокна на основе целлюлозы - это прежде всего вискозные волокна. Их формуют из концентрированного раствора натриевой соли ксантогената целлюлозы. Схему реакции образования ксантогената целлюлозы условно можно представить следующим образом:

x = 0.450.65

Целлофан - это плёнка, формуемая из щелочных растворов ксантогената целлюлозы. Он нетоксичен, применяется в качестве упаковочного материала для жирных мясомолочных продуктов, фруктов, кондитерских изделий и др. В медицине целлофан - имплантируемый материал.

Этролы - это эфироцеллюлозные пластмассы. Важнейшим среди них является целлулоид, основой которого является нитрат целлюлозы (коллоксилин ) с низкой степенью этерификации (х = 1.5  2.5) [C 6 H 7 O 2 (OH ) 3- x (ONO 2 ) x ] n . Среди других этролов - это пластмассы на основе ацетата, ацетобутирата, ацетопропионата целлюлозы и этилцеллюлозы. Этролы применяют в производстве труб для перекачки природного газа, деталей автомобилей, самолётов, телефонных аппаратов, радио- и телеприёмников, медицинских инструментов и др.

Пироксилины - нитраты целлюлозы с высокой степенью этерификации (х = 2  3). Пироксилины и колоксилин применяются также в производстве бездымного пороха динамита и других взрывчатых веществ.

7.3.2. Амилоза и амилопектин

Амилоза и амилопектин - полисахариды, встречающиеся в составе клубней, корней и семян растений в виде смеси, имеющей название крахмал .

Амилоза представляет собой неразветвлённую макромолекулу, структурным звеном которой являются остатки ,D - глюкопиранозы, соединённые 1,4-гликозидными связями. В составе макромолекул содержится от 200 до 1000 глюкозных остатков. В пространстве макромолекулы свёрнуты в спираль:

На каждый виток спирали приходится 6 моносахаридных звеньев. Спираль имеет приблизительно 50 витков.

Очень характерным свойством крахмала является цветная реакция с йодом - появление интенсивной синей окраски. Предполагается, что появление окраски обусловлено специфическим донорно-акцепторным взаимодействием между гидроксильными группами и молекулами йода за счёт включения йода во внутренний канал спирали макромолекулы амилозы.

Макромолекула амилопектина построена также из остатков ,D - глюкопиранозы, но она разветвлена. В точках ветвления глюкозный остаток образует не только 1,4-, но и 1,6-гликозидные связи:

Между точками ветвления располагается от 20 до 25 глюкозных остатков. Общее количество моносахаридных звеньев в макромолекуле амилопектина достигает 6000 и более.

Крахмал обычно содержит до 10-20% связанной воды. При быстром нагревании крахмала происходит гидролитическое расщепление макромолекул с образованием более коротких молекулярных цепей. Продукт такого гидролитического расщепления крахмала называют декстринами . В отличие от целлюлозы, крахмал в воде набухает и образует вязкие растворы (гели), которые здесь называются клейстером .

Гидролиз крахмала в пищеварительном тракте человека происходит под действием ферментов, расщепляющих 1,4- и 1,6-гликозидные связи.

Крахмал широко применяется в различных отраслях промышленности. Из него в ферментативных процессах получают этанол, бутанол-1, молочную, лимонную кислоты.

Халиков Рауф Музагитович

кандидат химических наук, доцент кафедры инженерной физики и физики материалов Башкирский государственный университет г. Уфа, Российская Федерация

Нигаматуллина Гузель Булатовна

специалист по учебно-методической работе кафедры техники и технологии пищевых производств Уфимский государственный университет экономики и сервиса г. Уфа, Российская Федерация

Аннотация: Обобщены изменения в надмакромолекулярной структуре амилозы и амилопектина в процессе формирования крахмальных зерен. Предложены оригинальные схемы фрактальной наноструктуры при формировании аморфно – кристаллических слоев гранул крахмала. Кластеры макромолекул амилозы и амилопектина располагаются в кристаллических слоях крахмальных зерен более упорядоченно и такая компактность обусловливает замедленность превращений полисахаридов в технологии переработки сырья. Модифицированные крахмалы в настоящее время применяются в производстве пищи в качестве гель-стабилизирующих ингредиентов.

Ключевые слова: крахмал, амилоза, амилопектин, супрамолекулярная наноструктура, фрактальные кластеры, модифицированные крахмалы, пищевые технологии

Transformation amylose and amylopectin macromolecules with technological processing of starch granules of vegetable raw materials in the food industry

Khalikov Rauf Muzagitovich

Ph. D., associate professor of the department of engineering physics and materials Bashkir State University Ufa, Russian Federation

Nigamatullina Guzel Bulatovna

specialist in educational and methodical work of the department of engineering and technology of food production Ufa State University of Economics and Service Ufa, Russian Federation

Abstract: Summarizes the changes in the supramacromolecular structure of amylose and amylopectin during the formation of starch granules. Original scheme proposed fractal nanostructures in the formation of amorphous - crystalline layers of starch granules. Clusters of amylose and amylopectin macromolecules are arranged in crystalline layers of starch grains more orderly and compact size makes this slowness transformations of polysaccharides in the technology of processing of raw materials. Modified starches currently used in food production as a gel-stabilizing ingredients.

Keywords: starch, amylose, amylopectin, supramolecular nanostructure, fractal clusters, modified starches, food technology

Крахмал является одним из наиболее многофункциональных источников сырья в пищевой промышленности. Он представляет собой запасное вещество растений, откладываемое в клетках семян и клубней в виде крахмальных зерен, которые могут быть легко извлечены после разрушения клеток. Физико-химические и биохимические изменения, происходящие с макромолекулами крахмала в процессе технологической обработки продуктов, оказывают существенное влияние на качество готовых блюд и кондитерских изделий: вкус и аромат .

Предоставленная статья нацелена на разбор наноструктурных изменений полисахаридов, протекающих в крахмальных гранулах при биотехнологической переработки исходного сырья в пищевых предприятиях в рамках фрактальной концепции.

Для глубокого анализа процессов, идущих в пищевой индустрии с крахмалсодержащим сырьем, необходимо вначале рассмотреть биосинтез полисахаридов и формирование крахмальных зерен. У большинства возделываемых растений (зерновых, картофеля и др.) гексозные углеводы, которые образуются в процессе фотосинтеза, запасаются в форме крахмала. Зеленые растения осуществляют биосинтез полисахаридов - ассимиляционного (транзиторного) крахмала в хлоропластах листьев и незрелых плодов, а резервного крахмала в амилопластах гетеротрофных тканей . У хлебных злаков (пшеницы, риса, кукурузы и т.п.) резервный крахмал в форме зерен (гранул) в эндосперме составляет 65-75% сухого веса семян.

Энзиматический биосинтез крахмала у растений осуществляется фосфотрансферазами (крахмалсинтазами ), переносящими остатки глюкозы от молекул фосфатглюкозы (G-1,6-Р-дифосфат, G-1-Р-монофосфат) на растущие макромолекулы с образованием α-(1→4)-связей и «ветвеобразующими» энзимами, перестраивающим линейные цепи в разветвленные полисахариды. Активированная фосфорилированием глюкоза переносится на терминальный конец «растущей» глюкановой цепочки, а полиглюкановые цепи макромолекул амилопектина через 15-25 мономерных звеньев имеют разветвление за счет α-(1→6) гликозидных связей (рис. 1):

Донором глюкозных остатков при биосинтезе амилозы может служить уридиндифосфатглюкоза, а под действием специфических изоферментов гексозофосфаты быстро превращаются в другие фосфорилированные соединения. Решающим этапом для биосинтеза крахмала является активация глюкозо-1-монофосфата в АДФ-глюкозу. Синтез разветвленной макромолекулы амилопектина, имеющей α-(1→6)-связи, происходит при помощи фермента α-глюкантрансферазы (Q-фермент) .

Проникновение через мембрану хлоропластов фосфорилированных метаболитов гексоз и сахарозы затруднено и поэтому транспортными формами углеводов зеленых растений служат триозофосфаты. Предполагается, что образующиеся в процессе фотосинтеза углеводы распадаются на интермедиаты – триозофосфаты и в таком виде передвигаются в цитоплазму клеток эндосперма семян, где могут служить материалом для ресинтеза гексоз, сахарозы, крахмала.

Макромолекулы линейной амилозы и разветвленного амилопектина являются основными структурообразующими ингредиентами крахмальных зерен. Крахмальные гранулы в эндосперме семян содержат кроме полисахаридов и энзимы для метаболизма амилозы (≈20-25%) и амилопектина (≈75-80%). Супрамолекулярная наноструктура амилозы представляет ≈ 10 3 -6.10 4 остатков глюкозы, соединенных α-(1→4) связями; макромолекула скручена в витки спирали. Концевой глюкозный остаток амилозы (так и амилопектин а) содержит редуцирующую (латентную альдегидную) группу (рис. 2):

Рис. 2. Структурные ингредиенты крахмала: амилоза и амилопектин

Рост крахмальных зерен происходит путем наложения новых слоев полигюканов на предыдущие, поэтому гранулы имеют слоистую структуру. Форма и размеры крахмальных зерен в значительной степени обусловлены генетическими факторами, внешними условиями в период «роста» гранул. Крупные зерна картофельного крахмала (от 15 до 100 мкм и более) имеют овальную форму; у пшеницы и ржи они мелкие: 2-10 мкм (В -тип) или крупные 25-40 мкм (А -тип), а у кукурузного крахмала гранулы имеют размеры в основном от 5 до 30 мкм .

Макромолекулы амилопектина гранул крахмала упакованы в квазикристаллическую структуру: в кристаллических участках полисахариды расположены более упорядоченно и прочно связаны между собой водородными связями, а в аморфных – супрамолекулярная укладка менее упорядочена. Межмакромолекулярные связи образуются как при непосредственном взаимодействии гидроксильных групп амилозы и амилопектина между собой, так и при взаимодействии с участием молекул воды (рис. 3):

Макромолекулы полисахаридов в крахмальном зерне в ходе биосинтеза и транспортировки размещаются в трехмерном пространстве цитоструктуры в форме складчато-радиальных кластеров. Амилопектиновые полиглюканы располагаются в крахмальных зернах радиально, формируя концентрированные чередующиеся слои с амилозой. В природных крахмалах наряду с полисахаридными компонентами содержится 2-4 % других веществ: сопутствующих белков, липидов, фосфатов. Фосфаты и липиды включаются в структуру крахмальных гранул при биосинтезе и «усиливают» стабильность наноструктуры .

Существуют несколько уровней наноструктурной организации крахмальных гранул: амилопектиновые кластеры (≈ 1 нм), ламеллы (≈ 10 нм), блоки (≈ 50-200 нм). Кристаллические ламели формированы упорядоченной фракцией амилопектина, а цепи амилозы, ориентированные поперек направления чередования ламелей, образуют аморфные участки. Ассоцированные цепочки макромолекул амилозы распределены и в аморфных, и в кристаллических ламелях .

В крахмальной грануле имеются «связанные» молекулы воды, количество которой зависит от источника растительного сырья и особенностей технологии получения крахмала. Следует также отметить, что крахмальное зерно пронизано микропорами и на этом основано использование крахмала в качестве адсорбента. С точки зрения синергетики биосинтез гранул крахмала можно рассматривать как самоорганизацию молекулярных систем, эволюционирующих во времени, что приводит к формированию временных фрактальных структур . Использование концепции фрактальных кластеров дает корректную трактовку формирование и технологическая переработка крахмальных зерен растительного сырья. Наноструктура крахмальных зерен представляют собой области локального порядка (кластеры), погруженные в аморфную матрицу, где сконцентрированы микрополости и микропоры.

Именно аморфные участки гранул в первую очередь подвергаются воздействию воды в процессе технологического извлечения крахмала из семян, так как к беспорядочно и рыхло расположенным макромолекулам полисахаридов легче всего получить доступ. Кристаллические области (слои) крахмальной гранулы, в которых биополимеры плотно упакованы, напротив, более устойчивы к гидролизу. Для проникновения в плотные слои крахмальных зерен молекул воды (или другого модифицирующего химического агента) требуется предварительное набухание гранулы. Так как макромолекулы амиломектина более плотно упакованы в крахмальных зернах, то в случае, когда гранулы помещаются в холодную воду они вначале набухают.

Микропористое строение крахмальных зерен обусловливает их высокую сорбционную способность. Благодаря гидрофильным свойствам макромолекул амилозы и амилопектина крахмальные гранулы очень гигроскопичны, особенно высока гигроскопичность картофельного крахмала. При контакте водорастворимых полисахаридов с молекулы воды сначала проникают с образованием водородных связей в наименее организованные участки цепи макромолекул. Такая начальная гидратация ослабляет межмакромолекулярные связи в плотных слоях и способствует проникновению воды и гидролизу и наиболее кристаллические слои. Этот процесс проходит через этап гелеобразования, когда крахмальные зерна набухают и увеличиваются в объеме благодаря силам когезии между макромолекулами.

В технологии пищевых продуктов имеют место следующие превращения крахмала: клейстеризация, инверсия, карамелизация, декстринизация, ретроградация, модификация, ферментативный гидролиз и др. В случае технологической обработки горячей водой крахмальные гранулы подвергаются необратимому процессу клейстеризации – разрушение аморфно-кристаллической структуры крахмальных гранул и набухание этих гранул, вызываемое диффузией молекул воды внутрь гранулы. Следует отметить, что полное разрушение кристаллических участков гранулы (то есть ее клейстеризация ) нежелательно, так как после этого крахмал становится нетехнологичным: трудно обезвоживается, плохо сушится и т.д.

В процессе набухания и клейстеризации часть полисахаридов растворяется и остается в полости зерна, а часть макромолекул переходят в раствор. Температура, при которой наступает такое изменение крахмального зерна, называется температурой клейстеризации , она колеблется в интервале 55…77ºС в зависимости от сырьевого источника крахмала. Например, структурообразующая фаза в пшеничном тесте состоит из клейковинного «каркаса» и набухших крахмальных гранул. При выпечке хлеба полисахариды частично клейстеризуются и гидролитическим путем расщепляются до декстринов. С течением времени при хранении хлебобулочных изделий «ухудшается» наноструктура клейстеризованного крахмала и хлеб черствеет.

Изменения крахмала в продуктах питания совершается в процессе их тепловой обработки и под воздействием механических деформаций и разрушений. Технологическое расщепление крахмальных гранул осуществляется в условиях повышенной температуры и под действием гидролитических ферментов (рис. 4):

Набухание сопровождается гидратацией макромолекул амилозы и амилопектина, ослаблением и разрушением водородных связей между ними. В холодной воде (до 40-45°С) крахмал набухает ограниченно, а с повышением температуры крахмальные гранулы поглощает больше воды, увеличиваются объем зерен и вязкость суспензии. При этом наноструктура зерен разрушается и более растворимая часть крахмала – амилоза переходит в раствор. В технологии спиртового производства водно-тепловой обработкой крахмал осахаривают амилолитическими энзимами до сбраживаемых углеводов.

Амилоза образует в горячей воде гидратированные мицеллы, но со временем ретроградирует (осаждается) в виде труднорастворимого геля. Ретроградация происходит вследствие тенденции амилозных макромолекул образовывать малорастворимые агрегаты при участии водородных связей. Амилопектин набухает в воде и дает стойкие вязкие коллоидные растворы; он препятствует ретроградации амилозы в растворах крахмала.

Нарушение агрегативной устойчивости дисперсных систем приводит к разделению их на макрофазы либо к возникновению в объеме системы пространственной фрактальных структур и переходу свободнодисперсной системы (золь) в связнодисперсную гелевую наноструктуру. В результате гелевая система на основе крахмальных макромолекул приобретает комплекс новых структурно-механических (реологических) свойств, к которым относятся прочность, упругость, эластичность и др. Гелеобразование обусловлено возникновением пространственного «каркаса», которая блокирует текучесть.

Разнообразные способы технологической обработки (физические, химические, биологические) нативных крахмалов позволяют существенно изменить их строение и свойства, к которым в первую очередь относятся гидрофильность (в частности, способность растворяться в холодной воде), способность к клейстеризации и гелеобразованию, устойчивость к нагреванию и воздействию кислот и т. п. Для различных отраслей пищевой индустрии кроме обычного (природного или нативного) сухого крахмала выпускаются модифицированные крахмалы (МК) .

Производство МК осуществляется из традиционного (картофель, кукуруза) и нетрадиционного (горох, сорго, пшеница и др.) сырья. При выборе источника крахмала для того или иного технологического процесса необходимо учитывать биохимический состав и структурно-механические свойства продукта, особенности его производства (температурные параметры, рН, продолжительность механического воздействия), хранения и реализации (замораживание ↔ оттаивание; вакуум-упаковку и т.д.).

Модифицированные крахмалы получают за счет физико-химических и биологических (энзимных) воздействий на крахмалсодержащее сырье . По характеру изменений все модифицированные крахмалы условно делят на группы: расщепленные крахмалы и замещенные крахмалы , а также сополимеры крахмала . При гелеобразовании макромолекул модифицированных крахмалов формируются самоподобные (фрактальные) кластеры с размерностью ≈ 1,75.

Модификация крахмала позволяет существенно изменить его свойства (гидрофильность, золь ↔ гелеобразование), а, следовательно, расширяет возможности использования. Одним из основных свойств, определяющих эффективность применения модифицированных крахмальных добавок в конкретном пищевом продукте, является совместимость с другими ингредиентами. Модификация крахмалов повышает их студнеобразующую, загущающую и эмульгирующую способность, обеспечивает использование в производстве различных блюд и кулинарных изделий, в том числе при замораживании ↔ оттаивании и тепловой обработке.

Во многих случаях МК могут быть представлены одновременно стабилизированными и поперечно сшитыми макромолекулами амилозы и амилопектина и этим обеспечивается агрегативная устойчивость ингредиентов пищи . В настоящее время разработаны новые виды набухающих МК для кондитерской, хлебопекарной промышленности, производства сухих смесей, мороженого, детского и лечебно-профилактического питания, десертов быстрого приготовления . Специальные виды МК с повышенным содержанием ионов железа, кальция, фосфора и сбалансированным аминокислотным составом применяются в производстве лечебно-профилактических продуктов.

Способность МК образовывать прочные эластичные пленки создает перспективы в изготовлении пищевых упаковок. Стабилизированные ингредиенты на основе модифицированных крахмалов широко применяются в питании, кулинарии при производстве супов (сухие, консервированные, замороженные), соусов (майонезы, томатные соусы), бульонных продуктов, продуктов для консервированных блюд.

Таким образом, в ходе формирования крахмальных гранул у растений происходят сложнейшие процессы «самоорганизованной укладки» макромолекул амилозы и амилопектиктина в супрамакромолекулярные кластеры. Агрегация кластеров полисахаридов самопроизвольно приводит к образованию фрактальноподобных ламелл. Крахмальные зерна являются достаточно устойчивыми наноструктурами, форма и размер которых очень разнообразны и характерны для данного вида растительного сырья.

Технологическая переработка крахмальных гранул зависит от наноструктурной организации полисахаридных компонентов и использование концепции фрактальных кластеров дает корректную интерпретацию формирования и технологической переработки крахмальных цитоструктур. Применение в современных пищевых технологиях структурирующих добавок на базе модифицированных крахмалов позволяет создать ассортимент продуктов эмульсионно-гелевой природы (майонезы, соусы, пастилы, зефиры, мармелады и др.).

Список литературы:

  1. Крахмал и крахмалопродукты / Под ред. Н.Г.Гулюка. – М.: Агропромиздат, 1985. - 240 с.
  2. Хелдт Г.-В. Биохимия растений. – М.: БИНОМ. Лаборатория знаний, 2011. - 471 с.
  3. James M.G, Denyer K., Myers A.M/ Starch synthesis in the cereal endosperm // Currrent Opinion in Plant Biology. – 2003. – V. 6. – P.215–222.
  4. Tester R.F., Karkalas J., Qi X. Starch – composition, fine structure and architecture // J. Cereal Sci. - 2004. - V.39. - P.151–165
  5. Халиков Р.М. Зависимость наноструктуры биомембран от стабилизирующего влияния полиеновых липидов // Электронный журнал «NAUKA–RASTUDENT.RU». – 2014. – №.1. – С.27-34. [Электронный ресурс] – Режим доступа.– URL: http://rastudent.ru/nauka/1/1139/
  6. Smith A.M., Zeeman S.C., Smith S.M. Starch degradation // Ann. Rev. Plant Biol. - 2005. - V.56. - P.73–93.
  7. Машуков Н., Халиков Р., Хараев А. Стабилизация и модификация молекулярных структур. – Saarbrucken: Palmarium Academic Publishing, 2014. - 216 с.
  8. Starch in food: Structure, function and applications. / Ed. Anne-Charlotte Eliasson. – Cambrige: Woodhead Publishing, 2004. - 598 р.
  9. Бутрим С. М., Бутрим Н.С., Бидьдюкевич Т.Д. и др. Получение и исследование физико-химических свойств низкозамещенных катионных эфиров крахмала // Журнал прикладной химии. - 2008. - Т.81. Вып.11. - С.1911-1917.
  10. Доценко С.М., Скрипко О.В., Богданов Н.Л. и др. Технология эмульсионных продуктов питания специализированного назначения // Пищевая промышленность. - 2014. - №7. - С.37-41.
  11. Соломин Д.А., Соломина Л.С.Инновации в производстве и применении модифицированных крахмалов // Хранение и переработка сельхозсырья. - 2014. - № 3. - С.19-22.

2015 Халиков Р.М., Нигаматуллина Г.Б.

Большинство природных углеводов состоит из нескольких химически связанных остатков моносахаридов. Углеводы, содержащие два моносахаридных звена, это дисахариды , трехзвенные – трисахариды и т.д. Общий термин олигосахариды часто используют для углеводов, содержащих от трех до десяти моносахаридных звеньев. Углеводы, состоящие из большего числа моносахаридов, называют полисахаридами.

В дисахаридах два моносахаридных звена соединены гликозидной связью между аномерным атомом углерода одного звена и гидроксильным атомом кислорода другого. По строению и по химическим свойствам дисахариды делят на два типа.

При образовании соединений первого типа выделение воды происходит за счет полуацетального гидроксила одной молекулы моносахарида и одного из спиртовых гидроксилов второй молекулы. К таким дисахаридам относится мальтоза. Подобные дисахариды имеют один полуацетальный гидроксил, по свойствам они аналогичны моносахаридам, в частности, могут восстанавливать такие окислители, как оксиды серебра и меди(II). Это – восстанавливающие дисахариды .
Соединения второго типа образуются так, что вода выделяется за счет полуацетальных гидроксилов обоих моносахаридов. В сахаридах этого типа нет полуацетального гидроксила, и они называются невосстанавливающими дисахаридами .
Тремя важнейшими дисахаридами являются мальтоза, лактоза и сахароза.

Мальтоза (солодовый сахар) содержится в солоде, т.е. в проросших зернах злаков. Мальтозу получают при неполном гидролизе крахмала ферментами солода. Мальтоза выделена в кристаллическом состоянии, она хорошо растворима в воде, сбраживается дрожжами.

Мальтоза состоит из двух звеньев D-глюкопиранозы, соединенных гликозидной связью между углеродом С-1 (аномерным углеродом) одного звена глюкозы и углеродом С-4 другого глюкозного звена. Такую связь называют -1,4-гликозидной связью. Показанная ниже формула Хеуорса
-мальтозы обозначается префиксом -, потому что ОН-группа при аномерном углероде расположенного справа глюкозного звена является -гидроксилом. Мальтоза – восстанавливающий сахар. Ее полуацетальная группа находится в равновесии со свободной альдегидной формой и может окисляться в карбоновую мальтобионовую кислоту.

Лактоза (молочный сахар) содержится в молоке (4–6%), ее получают из молочной сыворотки после удаления творога. Лактоза значительно менее сладкая, чем свекловичный сахар. Она используется для изготовления детского питания и фармацевтических препаратов.

Лактоза состоит из остатков молекул D-глюкозы и D-галактозы и представляет собой
4-(-D-галактопиранозил)-D-глюкозу, т.е. имеет не -, а -гликозидную связь.
В кристаллическом состоянии выделены - и -формы лактозы, обе они принадлежат к восстанавливающим сахарам.

Сахароза (столовый, свекловичный или тростниковый сахар) – наиболее распространенный в биологическом мире дисахарид. В сахарозе углерод С-1 D-глюкозы соединен с углеродом
С-2 D-фруктозы посредством -1,2-гликозидной связи. Глюкоза находится в шестичленной (пиранозной) циклической форме, а фруктоза в пятичленной (фуранозной) циклической форме. Химическое название сахарозы – -D-глюкопиранозил--D-фруктофуранозид. Поскольку оба аномерных углерода (и глюкозы, и фруктозы) вовлечены в образование гликозидной связи, глюкоза относится к невосстанавливающим дисахаридам. Вещества этого типа способны только к реакциям образования простых и сложных эфиров, как всякие многоатомные спирты. Сахароза и другие невосстанавливающие дисахариды гидролизуются особенно легко.

Задание . Приведите формулу Хеуорса для -аномера дисахарида, в котором два звена
D-глюкопиранозы соединены 1,6-гликозидной связью.
Решение.
Нарисуем структурную формулу звена D-глюкопиранозы. Затем соединим аномерный углерод этого моносахарида через кислородный мостик с углеродом С-6 второго звена
D-глюкопиранозы (гликозидная связь). Получающаяся молекула будет в - или -форме в зависимости от ориентации группы ОН на восстанавливающем конце молекулы дисахарида. Дисахарид, показанный ниже, является -формой:

УПРАЖНЕНИЯ.

1. Какие углеводы называют дисахаридами и какие – олигосахаридами?

2. Приведите формулы Хеуорса восстанавливающего и невосстанавливающего дисахарида.

3. Назовите моносахариды, из остатков которых состоят дисахариды:

а) мальтоза; б) лактоза; в) сахароза.

4. Составьте структурную формулу трисахарида из остатков моносахаридов: галактозы, глюкозы и фруктозы, соединенных любым из возможных способов.

Урок 36. Полисахариды

Полисахариды являются биополимерами. Их полимерные цепи состоят из большого числа моносахаридных звеньев, соединенных друг с другом гликозидными связями. Три важнейших полисахарида – крахмал, гликоген и целлюлоза – являются полимерами глюкозы.

Крахмал – амилоза и амилопектин

Крахмал (С 6 Н 10 О 5)n – резервное питательное вещество растений – содержится в семенах, клубнях, корнях, листьях. Например, в картофеле – 12–24% крахмала, а в зернах кукурузы – 57–72%.
Крахмал представляет собой смесь двух полисахаридов, различающихся строением цепи молекулы, – амилозы и амилопектина. В большинстве растений крахмал состоит из 20–25% амилозы и 75–80% амилопектина. Полный гидролиз крахмала (как амилозы, так и амилопектина) приводит к D-глюкозе. При мягких условиях можно выделить промежуточные продукты гидролиза – декстрины – полисахариды (С 6 Н 10 О 5)m с меньшей молекулярной массой, чем крахмал (m < n ), олигосахариды, а также дисахарид мальтозу.
По данным рентгеноструктурного анализа, амилоза имеет нитевидное строение, т.е. состоит из протяженных неразветвленных цепей. Такие цепи включают до 4000 звеньев D-глюкозы, соединенных 1,4-гликозидными связями.

Амилопектин – полисахарид разветвленного строения (примерно 30 ответвлений в молекуле). Он содержит два типа гликозидных связей. Внутри каждой цепи звенья D-глюкозы соединены
1,4-гликозидными связями, как в амилозе, но длина полимерных цепей варьируется от 24 до 30 глюкозных единиц. В местах разветвлений новые цепи присоединяются посредством
1,6-гликозидных связей.

Гликоген (животный крахмал) образуется в печени и мышцах животных и играет важную роль в обмене углеводов в животных организмах. Гликоген – белый аморфный порошок, растворяется в воде с образованием коллоидных растворов, при гидролизе дает мальтозу и D-глюкозу. Подобно амилопектину, гликоген является нелинейным полимером D-глюкозы с -1,4- и
-1,6-гликозидными связями. Каждая ветвь содержит 12–18 звеньев глюкозы. Однако гликоген имеет меньшую молекулярную массу и еще более разветвленное строение (примерно 100 ответвлений в молекуле), чем амилопектин. Общее содержание гликогена в организме взрослого хорошо питающегося человека примерно 350 г, которые в равных долях распределены между печенью и мускулами.

Целлюлоза (клетчатка) (С 6 Н 10 О 5)х – наиболее распространенный в природе полисахарид, главная составная часть растений. Почти чистой целлюлозой является хлопковое волокно. В древесине целлюлоза составляет примерно половину сухого вещества. Кроме того, в древесине содержатся другие полисахариды, которые объединяют общим названием «гемицеллюлозы», а также лигнин – высокомолекулярное вещество, относящееся к производным бензола. Целлюлоза – аморфное волокнистое вещество. Она нерастворима в воде и органических растворителях.
Целлюлоза – линейный полимер D-глюкозы, в котором мономерные звенья соединены
-1,4-гликозидными связями. Причем -D-глюкопиранозные звенья попеременно повернуты друг относительно друга на 180°. Средняя относительная молекулярная масса целлюлозы составляет 400 000, что соответствует примерно 2800 глюкозным единицам. Волокна целлюлозы представляют собой пучки (фибриллы) параллельных полисахаридных цепей, удерживаемых вместе водородными связями между гидроксильными группами соседних цепей. Упорядоченное строение целлюлозы обусловливает ее высокую механическую прочность.

УПРАЖНЕНИЯ.

1. Какой моносахарид служит структурным звеном полисахаридов – крахмала, гликогена и целлюлозы?

2. Смесь каких двух полисахаридов представляет собой крахмал? В чем различие их строения?

3. Чем отличаются по строению крахмал и гликоген?

4. Как различаются по растворимости в воде сахароза, крахмал и целлюлоза?

Ответы на упражнения к теме 2

Урок 35.

1. Дисахариды и олигосахариды – сложные углеводы, часто обладающие сладким вкусом. При гидролизе они образуют две или несколько (3–10) молекул моносахаридов.

Мальтоза – восстанавливающий дисахарид, т.к. содержит полуацетальный гидроксил.

Сахароза – невосстанавливающий дисахарид, т.к. в молекуле нет полуацетального гидроксила.

3. а) Дисахарид мальтоза получается путем конденсации двух молекул D-глюкопиранозы с отщеплением воды от гидроксилов при С-1 и С-4.
б) Лактоза состоит из остатков молекул D-галактозы и D-глюкозы, находящихся в пиранозной форме. При конденсации этих моносахаридов они связываются: атом С-1 галактозы через кислородный мостик с атомом С-4 глюкозы.
в) Сахароза содержит остатки D-глюкозы и D-фруктозы, соединенные посредством 1,2-гликозидной связи.

4. Структурная формула трисахарида:

Урок 36.

1. Структурное звено крахмала и гликогена – -глюкоза, а целлюлозы – -глюкоза.

2. Крахмал – это смесь двух полисахаридов: амилозы (20–25%) и амилопектина (75–80%). Амилоза – линейный полимер, тогда как амилопектин – разветвленный. Внутри каждой цепи этих полисахаридов звенья D-глюкозы соединены 1,4-глюкозидными связями, а в местах разветвлений амилопектина новые цепи присоединяются посредством 1,6-гликозидных связей.

3. Гликоген, подобно амилопектину крахмала, является нелинейным полимером D-глюкозы с
-1,4- и -1,6-гликозидными связями. По сравнению с крахмалом каждая цепь гликогена примерно вдвое короче. Гликоген имеет меньшую молекулярную массу и более разветвленное строение.

4. Растворимость в воде: у сахарозы – высокая, у крахмала – умеренная (низкая), целлюлоза – нерастворима.

Гликоген – главный энергетический резерв человека и животных. Особенно много его в печени (до 10%) и мышцах (до 4% от сухой массы). Состоит также из амилопектина, только молекула более компактная, т.к. имеет более разветвленную структуру. n – формула аналогична формуле крахмала. Mr 10 5 – 10 8 Да

Крахмал и гликоген при кислотном гидролизе распадаются сначала на декстрины, затем на дисахариды – мальтозу и изомальтозу, затем на две глк.

Целлюлоза (клетчатка ) – это структурный полисахарид растительного происхождения, состоящий из ß - D – глюкопиранозных остатков, соединенных 1"4 гликолизидной связью. Mr=1-2млн Да. В организме человека и животных не переваривается; т.к. отсутствует фермент ß–глюкозидаза . В присутствии в пище оптимального количества целлюлозы формируются каловые массы.

Обмен углеводов

Складывается из

1) расщепления полисахаридов в ЖКТ до моносахаров, которые всасываются из кишечника в кровь;

2) синтеза и распада гликогена в тканях;

3) анаэробного и аэробного расщепления глк;

4) взаимопревращения гексоз;

5) аэробного метаболизма ПВК;

6) глюконеогенеза - синтеза глк из неуглеводных компонентов – ПВК, лактата глицерина, АК и др. источников.

Основной метаболит в обмене углеводов – это глюкоза .

Её источники: 1) углеводы пищи

2) гликоген

3) ПВК, АК, глц и т.д.

Переваривание углеводов (крахмала).

1. Ротовая полость. Слюна содержит ф-т амилазу α, ß, γ (различаются по конечным продуктам их ферментативного действия).

α–амилаза – это эндоамилаза, которая действует на 1"4 внутренние связи полисах.

ß- и γ-амилазы – это экзоамилазы – расщепляют концевые 1"4 связи

ß–амилаза – дисахарид мальтозу;

γ амилаза – один за другим концевые остатки глк.

Амилаза слюны представлена только α–амилазой, поэтому результатом ее действия являются крупные обломки гликогена и крахмала – декстрины и в небольшом количестве мальтоза.

2. Желудок . Далее пища, более или менее смоченная слюной, поступает в желудок. В результате кислой среды желудка (рН 1,5 – 2,5) α–амилаза слюны инактивируется. В глубоких слоях пищевого комка действие амилазы продолжается и происходит расщепление полисахаридов с образованием декстринов и мальтозы. В самом желудке распада У нет, т.к. здесь отсутствует специфические энзимы.

3. Основной этап расщепления У происходит в 12 перстной кишке.

В просвет кишечника выделяется панкриатическая α-амилаза (рН – 7). Панкреатическая амилаза расщепляет только 1"4 гликозидные связи. Но, как известно, молекула гликогена разветвленная. В точках ветвления 1"6 гликозидной связи, на нее воздействует специфические ф-ты: (глюкоза) олиго–1,6–глюкозидаза и (крахмал) амило-1,6–глюкозидаза . В кишечнике под действием этих 3-х ф-тов У расщепляются до дисахаридов (мальтоза и др.). На связи в дисахаридах эти ферменты не воздействуют. Для этих целей в кишечнике существует свои ферменты: их название – корень дисахарида + аза: мальтаза, сахараза и т.д. В результате суммарного воздействия этих Е образуется смесь моносахаридов – глк, галактоза, фруктоза. Основную массу составляет глюкоза.

4.Всасывание глк происходит за счет активного транспорта с Na + . Глк + Na + образует комплекс, который поступает внутрь клетки, здесь комплекс распадается, Na + выводится наружу. Другие моносахара всасываются диффузно (т.е. по градиенту концентрации ). Поступающая из просвета кишечника глк большей частью (> 50%) с кровью воротной вены поступает в печень, остальная глк через общий кровоток транспортируется в другие ткани. Концентрация глк в крови в норме поддерживается на постоянном уровне и составляет 3,33 – 5,55 мкмоль/л, что соответствует 80-100 мг в 100 мл. крови. Транспорт глк в клетки носит характер облегченной диффузии , но в многих клетках регулируется гормоном поджелудочной железы инсулино м (исключение – мозг и печень – здесь содержание глк. прямо пропорционально конц. глк в крови ). Действие инсулина приводит к перемещению белков переносчиков из цитозоля в плазматическую мембрану. Затем с помощью этих белков глк транспортируется в клетку по град. концентрации. Инсулин т.о. повышает проницаемость клеточной мембраны для глк.

Крахмал (С 6 Н 10 О 5)n является важнейшим представителем полисахаридов в растениях. Этот запасной полисахарид используется растениями как энергетический материал. Крахмал в животном организме не синтезируется, аналогичным запасным углеводом у животных является гликоген.

Крахмал не является химически индивидуальным веществом. В его состав кроме полисахаридов входят минеральные вещества, в основном представленные фосфорной кислотой, липиды и высокомолекулярные жирные кислоты - пальмитиновая, стеариновая и некоторые другие соединения, адсорбированные углеводной полисахаридной структурой крахмала.
В клетках эндосперма крахмал находится в виде крахмальных зерен, форма и размер которых характерны для данного вида растения. Форма крахмальных зерен дает возможность легко распознать крахмалы различных растений под микроскопом, что используется для обнаружения примеси одного крахмала в другом, например при добавлении кукурузной, овсяной или картофельной муки к пшеничной.
В запасающих тканях различных органов - клубнях, луковицах более крупные крахмальные зерна откладываются в запас в амилопластах как вторичный (запасной) крахмал. Крахмальные зерна имеют слоистую структуру.

Строение углеводных компонентов крахмала
Углеводная часть крахмала состоит из двух полисахаридов:
1. Амилозы;
2. Амилопектина.
1 Строение амилозы.
В молекуле амилозы остатки глюкозы связаны гликозидными a1 ® 4 связями, образуя линейную цепочку (рис. 8, а ).
У амилозы различают восстанавливающий конец (А ) и невосстанавливающий (В ). Линейные цепи амилозы, содержащие от 100 до нескольких тысяч остатков глюкозы, способны спирально свертываться и таким образом принимать более компактную форму (рис. 8, б ). В воде амилоза растворяется хорошо, образуя истинные растворы, которые неустойчивы и способны к ретроградации - самопроизвольному выпадению в осадок.

Рис. 8. Крахмал, его строение. Амилоза и амилопектин:

а - схема соединения молекул глюкозы в амилозе; б - пространственная структура амилозы; в - схема соединения молекул глюкозы в амилопектине;г - пространственная молекула амилопектина

2 Строение амилопектина

Амилопектин представляет собой разветвленный компонент крахмала. Он содержит до 50 000 остатков глюкозы, соединенных между собой главным образом a1 ® 4 гликозидными связями (линейные участки молекулы амилопектина). В каждой точке разветвления молекулы глюкозы (a-D -глюкопиранозы) образуют a1 ® 6 гликозидную связь, которая составляет около 5 % общего числа гликозидных связей молекулы амилопектина (рис. 8, в, г ).



Каждая молекула амилопектина имеет один восстанавливающий конец (А ) и большое количество невосстанавливающих концов (В ). Структура амилопектина трехмерна, его ветви расположены по всем направлениям и придают молекуле сферическую форму. Амилопектин в воде не растворяется, образуя суспензию, но при нагревании или под давлением образует вязкий раствор - клейстер. С йодом суспензия амилопектина дает красно-бурую окраску, йод при этом адсорбируется на молекуле амилопектина, поэтому цвет суспензии обусловлен окраской самого йода.

Как правило, содержание амилозы в крахмале составляет от 10 до 30 %, а амилопектина - от 70 до 90 %. Некоторые сорта ячменя, кукурузы и риса называются восковидными. В зернах этих культур крахмал состоит только из амилопектина. В яблоках крахмал представлен только амилозой.

^ Ферментативный гидролиз крахмала

Гидролиз крахмала катализируется ферментами – амилазами. Амилазы относятся к классу гидролаз, подклассу – карбогидраз. Различают α- и b-амилазы. Это однокомпонентные ферменты, состоящие из молекул белка. Роль активного центра у них выполняют группы – NH 2 и – SH.



^ Характеристика α – амилазы

α – Амилаза содержится в слюне и поджелудочной железе животных, в плесневых грибах, в проросшем зерне пшеницы, ржи, ячменя (солод).

α- Амилаза является термостабильным ферментом, её оптимум находится при температуре 70 0 С. Оптимальное значение pH 5.6-6.0, при pH 3.3-4.0 она быстро разрушается.

Характеристика b – амилазы

b – амилаза находится в зерне пшеницы, ржи, ячменя, в соевых бобах, в батате. Однако активность фермента в созревших семенах и плодах низкая, возрастает активность при прорастании семян.

β-амилаза расщепляет амилозу полнотью, на 100% превращая ее в мальтозу. Амилопектин расщепляет на мальтозу и декстрины дающие красно-коричневое окрашивание с йодом, расщепляя лишь свободные концы глюкозных цепочек. Действие прекращается, когда доходит до разветвлений. β-амилаза расщепляет амилопектин на 54% с образованием мальтозы. Образовавшиеся при этом декстрины гидролизуются α-амилазой с образованием декстринов меньшей молекулярной массы и не дающих окрашивания с йодом. При последующем длительном действии α-амилозы на крахмал около 85% его превращается в мальтозу.
Т.е. при действии β-амилазы образуются в основном мальтоза и немного высокомолекулярных декстринов. При действии α-амилазы образуются главным образом декстрины меньшей молекулярной массы и незначительное количество мальтозы. Ни α- ни β-амилазы в отдельности не могут полностью гидролизовать крахмал с образованием мальтозы. При одновременном действии обеих амилаз крахмал гидролизуется на 95%.

Целлюлоза (С 6 Н 10 О 5) – полисахарид второ-го порядка, является основным компонентом клеточных стенок. Целлюлоза состоит из остатков b-D -глюкозы, соединенных между собой b1 ® 4 гликозидной связью (рис. 9, а ). Среди других полисахаридов, из которых состоит клеточная стенка растений, он относится к микрофибриллярным полисахаридам, так как в клеточных стенках молекулы целлюлозы соединены в структурные единицы, получившие название микрофибрилл. Последняя состоит из пучка молекул целлюлозы, расположенных по ее длине параллельно друг другу.
^ Строение целлюлозы



Рис. 9. Строение целлюлозы

а – соединение молекул глюкозы; б – структура микрофибрилл; в – пространственная структура
Распространение целлюлозы
Содержание целлюлозы в растениях колеблется в широких пределах: в волокнах хлопчатника 90 %, древесине 50, листьях табака 10, семенах злаковых культур 3…5, подсолнечника 2, ягодах винограда 1 %.
В среднем на одну молекулу целлюлозы приходится около 8000 остатков глюкозы. Гидроксилы у атомов углерода С2, С3 и С6 не замещены. Повторяющееся звено в молекуле целлюлозы - остаток дисахарида целлобиозы.

Свойства целлюлозы

Целлюлоза не растворяется в воде, но в ней набухает. Свободные гидроксильные группы способны замещаться на радикалы - метильный -СН 3 или ацетальный с образованием простой или сложноэфирной связи. Это свойство играет большую роль при изучении строения целлюлозы, а также находит применение в промышленности при производстве искусственного волокна, лаков, искусственной кожи и взрывчатых веществ.

Гидролиз.

(С 6 Н 10 О 5)n + nH 2 O → nC 6 H 12 O 6

Образование сложных эфиров.

[С6Н7O2(ОСОСН3)3]n+3nН2O[С6Н7O2(ОН)3]n+3nСН3СООН

Элементарное звено молекулы целлюлозы имеет три гидроксильные группы, которые могут участвовать в образовании сложных эфиров с кислотами.

3. Реакция нитрования целлюлозы. (Слайд №12 )

n + 3nHONO 2 → n + 3n H 2 O

4. Реакция получения ацетилцеллюлозы.

n + 3nHOOC-CH 3 → n + 3n H 2 O


Список литературы

Основная

1. Робертс Дж., Кассерио М. Основы органической химии. Т. 1, 2. М.: Мир,1978.

2. Гауптман 3. Органическая химия. М.: Химия, 1979.

3. Несмеянов А.Н. Несмеянов Н.А. Начала органической химии. Т. 1, 2. М.: Химия, 1970.

4. Моррисон Р., Бойд Р. Органическая химия. М.: Мир, 1974.

5. Неницеску К. Органическая химия. Т. 1, 2. М., 1963.

6. Органикум. Практикум по органической химии. Т.1, 2. М.: Мир, 1979.

7. Нейланд О.Я. Органическая химия. М.: Высш.шк.,1990.

Дополнительная

1. Беккер Г. Введение в электронную теорию органических реакций. М.: Мир, 1977.