28.11.2023

Космос. Красный квадрат и холодные звёзды


Вокруг нас столько всего странного, занятного и интересного, а кто-то ещё умудряется скучать.

Прекрасный и удивительный космос


Космос прекрасен и весьма удивителен. Планеты вращаются вокруг звезд, которые умирают и снова гаснут, а все в галактике вращается вокруг сверхмассивной черной дыры, медленно засасывающей все, что подойдет слишком близко. Но иногда космос подбрасывает настолько странные вещи, что вы скрутите свой разум в крендель, пытаясь понять это…

Туманность Красный Квадрат

Объекты в космосе по большей части весьма округлые. Планеты, звезды, галактики и форма орбит — все напоминает круг. Но туманность Красный Квадрат, облако газа интересной формы, хм, квадратная. Разумеется, астрономы весьма и весьма удивились, поскольку объекты в космосе не должны быть квадратными.

На самом деле, это не совсем квадрат. Если вы внимательно посмотрите на изображение, вы заметите, что в поперечнике форма образована двумя конусами в точке соприкосновения. Но опять же, в ночном небе не так много конусов.

Туманность в форме песочных часов светится весьма ярко, поскольку в самом ее центре находится яркая звезда — там, где соприкасаются конусы. Вполне возможно, что эта звезда взорвалась и стала сверхновой, в результате чего кольца у основания конусов стали светиться интенсивнее.

Столкновения галактик

В космосе все постоянно движется — по орбите, вокруг своей оси или просто мчится через пространство. По этой причине — и благодаря невероятной силе притяжения — галактики сталкиваются постоянно. Возможно, вас это не удивит — достаточно посмотреть на Луну и понять, что космос любит удерживать мелкие вещи возле крупных. Когда две галактики, содержащие миллиарды звезд, сталкиваются, наступает локальная катастрофа, да?

На самом деле, в столкновениях галактик вероятность того, что две звезды столкнутся, практически равна нулю. Дело в том, что помимо того, что космос сам по себе велик (и галактики тоже), он также сам по себе довольно пустой. Поэтому его и называют «космическим пространством». Хотя наши галактики и смотрятся твердыми на расстоянии, не забывайте, что ближайшая к нам звезда находится на расстоянии 4,2 световых лет от нас. Это очень далеко.

Столпы Творения

Как однажды написал Дуглас Адамс, «космос большой. На самом деле большой. Вы даже представить не можете, насколько умопомрачительно он большой». Мы все знаем, что единицей измерения, которой измеряют расстояния в космосе, является световой год, но мало кто задумывается о том, что это означает. Световой год — это настолько большое расстояние, что свет — нечто, что движется быстрее всего во Вселенной — проходит это расстояние только за год.

Это означает, что когда мы смотрим на объекты в космосе, которые действительно далеки, вроде Столпов Творения (образования в туманности Орла), мы смотрим назад во времени. Как так получается? Свет из туманности Орла достигает Земли за 7000 лет и мы видим ее такой, какой она была 7000 лет назад, поскольку то, что мы видим — это отраженный свет.

Последствия этого заглядывания в прошлое весьма странные. К примеру, астрономы считают, что Столпы Творения были уничтожены сверхновой около 6000 лет назад. То есть этих Столпов уже просто не существует. Но мы их видим.

Проблема горизонта

Космос — сплошная загадка, куда ни глянь. Например, если мы посмотрим в точку на востоке нашего неба и измерим радиационный фон, а затем проделаем то же самое в точке на западе, которая будет отделена от первой 28 миллиардами световых лет, мы увидим, что фоновое излучение в обеих точках одинаковой температуры.

Это кажется невозможным, потому что ничто не может двигаться быстрее света, и даже свету понадобилось бы слишком много времени, чтобы пролететь от одной точки к другой. Как мог микроволновой фон стабилизироваться почти однородно по всей вселенной?

Это может объяснить теория инфляции, которая предполагает, что вселенная растянулась на большие расстояния сразу после Большого Взрыва. Согласно этой теории, не Вселенная образовалась путем растягивания своих краев, а само пространство-время растянулось, как жвачка, в доли секунды.

В это бесконечное короткое время в этом космосе нанометр покрывал несколько световых лет. Это не противоречит закону о том, что ничто не может двигаться быстрее скорости света, потому что ничто и не двигалось. Оно просто расширялось.

Представьте себе первоначальную вселенную как один пиксель в программе для редактирования изображений. Теперь масштабируйте изображение с коэффициентом в 10 миллиардов. Поскольку вся точка состоит из того же материала, ее свойства — и температура в том числе — однородны.

Как черная дыра вас убьет

Черные дыры настолько массивны, что материал начинает вести себя странно в непосредственной близости к ним. Можно представить, что быть втянутым в черную дыру — значит провести остаток вечности (или истратить оставшийся воздух), безнадежно крича в туннеле пустоты. Но не переживайте, чудовищная гравитация лишит вас этой безнадежности.

Сила гравитации тем сильнее, чем ближе вы к ее источнику, а когда источник представляет собой такое мощное тело, величины могут серьезно меняться даже на коротких дистанциях — скажем, высота человека.

Если вы упадете в черную дыру ногами вперед, сила гравитации, воздействующая на ваши ноги, будет настолько сильной, что вы увидите, как ваше тело вытягивается в спагетти из линий атомов, которые затягиваются в самый центр дыры. Мало ли, вдруг эта информация будет для вас полезной, когда вы захотите нырнуть в чрево черной дыры.

Клетки мозга и Вселенная

Недавно физики создали имитацию начала вселенной, которая началась с Большого Взрыва и последовательности событий, которые привели к тому, что мы видим сегодня. Ярко-желтый кластер плотно упакованных галактик в центре и «сеть» менее плотных галактик, звезд, темной материи и прочего-прочего.

Модель крупномасштабной структуры космоса

В то же время студент из Университета Брандиса исследовал взаимосвязь нейронов в мозге, разглядывая тонкие пластинки мозга мыши под микроскопом. Изображение, которое он получил, содержит желтые нейроны, связанные красной «сетью» соединений. Ничего не напоминает?

Нейроны головного мозга

Два изображения, хотя и сильно отличаются своими масштабами (нанометры и световые года), поразительно похожи. Что это, обычный случай фрактальной рекурсии в природе, или вселенная действительно представляет собой клетку мозга внутри другой огромной вселенной?

Недостающие барионы

Согласно теории Большого Взрыва, количество материи во вселенной в конечном итоге создаст достаточное гравитационное притяжение, чтобы замедлить расширение вселенной до полной остановки.

Однако барионная материя (то, что мы видим — звезды, планеты, галактики и туманности) составляет лишь от 1 до 10 процентов от всей материи, которая должна быть. Теоретики сбалансировали уравнение гипотетической темной материей (которую мы не можем наблюдать), чтобы спасти ситуацию.

Каждая теория, которая пытается объяснить странное отсутствие барионов, остается ни с чем. Самая распространенная теория гласит, что пропавшая материя состоит из межгалактической среды (дисперсный газ и атомы, плавающие в пустотах между галактиками), но даже с учетом этого у нас остается масса пропавших барионов.

Пока у нас нет ни малейшего представления о том, где находится большая часть материи, которая должна быть на самом деле.

Холодные звезды

В том, что звезды горячие, никто не сомневается. Это так же логично, как и то, что снег белый, а дважды два — четыре. При посещении звезды мы бы больше переживали о том, как не сгореть, а не о том, как бы не замерзнуть — в большинстве случаев.

Коричневые карлики — это звезды , которые весьма холодны по стандартам звезд. Не так давно астрономы обнаружили тип звезд под названием Y-карлики, которые представляют собой самый холодный подвид звезд в семействе коричневых карликов.

Y-карлики холоднее, чем человеческое тело. При температуре в 27 градусов по Цельсию, можно спокойно пощупать такого коричневого карлика, прикоснуться к нему, если только его невероятная гравитация не превратит вас в кашу.

Эти звезды чертовски трудно обнаружить, поскольку они не выделяют практически никакого видимого света, поэтому искать их можно только в инфракрасном спектре. Ходят даже слухи, что коричневые и Y-карлики — это и есть та самая «темная материя», которая исчезла из нашей Вселенной.

Проблема солнечной короны

Чем дальше объект от источника тепла, тем он холоднее. Вот почему странно то, что температура поверхности Солнца составляет около 2760 градусов по Цельсию, а его корона (что-то типа его атмосферы) в 200 раз жарче.

Даже если могут быть какие-нибудь процессы, которые объясняют разницу температур, ни один из них не может объяснить настолько большую разницу.

Ученые полагают, что это как-то связано с небольшими вкраплениями магнитного поля, которые появляются, исчезают и передвигаются по поверхности Солнца. Поскольку магнитные линии не могут пересекаться друг с другом, вкрапления перестраиваются каждый раз, когда подходят слишком близко, и этот процесс нагревает корону.

Хотя это объяснение может показаться аккуратным, оно далеко не изящно. Эксперты не могут сойтись во мнении о том, как долго живут эти вкрапления, не говоря уж о процессах, посредством которых они могли бы нагревать корону. Даже если ответ на вопрос кроется в этом, никто не знает, что заставляет эти случайные вкрапления магнетизма вообще появляться.

Черная дыра Эридана

Hubble Deep Space Field — это снимок, полученный телескопом Хаббла, на котором запечатлены тысячи удаленных галактик. Однако, когда мы смотрим в «пустой» космос в области созвездия Эридан, мы ничего не видим. Вообще. Просто черную пустоту, растянувшуюся на миллиарды световых лет.

Почти любые «пустоты» в ночном небе возвращают снимки галактик, хоть и размытых, но существующих. У нас есть несколько методов, которые помогают определить то, что может быть темной материей, но и они оставляют нас с пустыми руками, когда мы смотрим в пустоту Эридана.

Одна спорная теория говорит о том, что пустота содержит сверхмассивную черную дыру, вокруг которой вращаются все ближайшие галактические скопления, и это высокоскоростное вращение совмещается с «иллюзией» расширяющейся вселенной. Другая теория говорит о том, что вся материя когда-нибудь склеится вместе, образовав галактические скопления, а между скоплениями со временем образуются дрейфующие пустоты.

Но это не объясняет вторую пустоту, обнаруженную астрономами в южном ночном небе, которая на этот раз примерно 3,5 миллиарда световых лет в ширину. Она настолько широка, что ее с трудом может объяснить даже теория Большого Взрыва, поскольку Вселенная не существовала настолько долго, чтобы такая огромная пустота успела сформироваться путем обычного галактического дрейфа.

Звезды, которые мы наблюдаем, различаются как по цвету, так и по яркости свечения. Яркость звезды зависит как от ее массы, так и от расстояния до нее. А цвет свечения зависит от температуры на ее поверхности. Самые «холодные» звезды имеют красный цвет. А самые горячие – голубоватый оттенок. Белые и голубые звезды - наиболее горячие, их температура выше, чем температура Солнца. Наша звезда Солнце относится к классу желтых звезд.

Сколько же звезд на небе?
Подсчитать даже хотя бы примерно количество звезд в известной нам части Вселенной практически невозможно. Ученые могут лишь сказать, что в нашей Галактике, которая называется «Млечный Путь», может быть около 150 миллиардов звезд. А ведь есть еще и другие галактики! Зато гораздо более точно людям известно количество звезд, которые можно увидеть с поверхности Земли невооруженным глазом. Таких звезд около 4,5 тысяч.

Как рождаются звезды?
Если звезды зажигают, значит это кому-нибудь нужно? В бескрайнем космическом пространстве всегда есть молекулы простейшего вещества во Вселенной – водорода. Где-то водорода меньше, где-то больше. Под действием сил взаимного притяжения молекулы водорода притягиваются друг к другу. Эти процессы притяжения могут длиться очень долго – миллионы и даже миллиарды лет. Но рано или поздно молекулы водорода притягиваются настолько близко друг к другу, что образуется газовое облако. При дальнейшем притяжении в центре такого облака начинает повышаться температура. Пройдут еще миллионы лет, и температура в газовом облаке может подняться настолько, что начнется реакция термоядерного синтеза – водород начнет превращаться в гелий и на небосводе появится новая звезда. Любая звезда – это раскаленный газовый шар.

Продолжительность жизни у звезд существенно различается. Ученые выяснили, что чем больше масса новорожденной звезды, тем меньше срок ее жизни. Срок жизни звезды может составлять как сотни миллионов лет, так и миллиарды лет.

Световой год
Световой год – это расстояние, которое преодолевает за год луч света, летящий со скоростью 300 тысяч километров в секунду. А в году 31536000 секунд! Так вот, от ближайшей к нам звезды под названием Проксима Центавра луч света летит более четырех лет (4.22 световых года)! Эта звезда находится от нас в 270 тысяч раз дальше, чем Солнце. А остальные звезды находятся гораздо дальше - в десятках, сотнях, тысячах и даже в миллионах световых лет от нас. Именно поэтому звезды кажутся нам такими маленькими. И даже в самый мощный телескоп они, в отличие от планет, всегда видны, как точки.

Что такое «созвездие»?
С древних времен люди смотрели на звезды и видели в причудливых фигурах, которые образуют группы ярких звезд, образы животных и мифических героев. Такие фигуры на небосводе стали называть созвездиями. И, хотя на небосводе звезды, включаемые людьми в то или иное созвездие, зрительно находятся рядом друг с другом, в космическом пространстве эти звезды могут находиться на значительном удалении друг от друга. Самыми известными созвездиями являются Большая и Малая Медведицы. Дело в том, что в созвездие Малая Медведица входит Полярная звезда, на которую указывает северный полюс нашей планеты Земля. И зная, как найти на небосводе Полярную звезду, любой путешественник и мореплаватель сможет определить, где находится север и сориентироваться на местности.


Сверхновые звезды
Некоторые звезды в конце срока своей жизни вдруг начинают светиться в тысячи и миллионы раз ярче, чем обычно, и выбрасывают в окружающее пространство огромные массы вещества. Принято говорить, что происходит взрыв сверхновой звезды. Свечение сверхновой постепенно затухает и в конце концов на месте такой звезды остается только светящееся облако. Подобная вспышка сверхновой наблюдалась древними астрономами Ближнего и Дальнего Востока 4 июля 1054 года. Затухание этой сверхновой длилось 21 месяц. Сейчас на месте этой звезды находится известная многим любителям астрономии Крабовидная туманность.

Подводя итог данному разделу, отметим, что

V. Виды звезд

Основная спектральная классификация звёзд:

Коричневые карлики

Коричневые карлики это тип звезд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Долгое время коричневые карлики были гипотетическими объектами. Их существование предсказали в середине XX в., основываясь на представлениях о процессах, происходящих во время формирования звезд. Однако в 2004 году впервые был обнаружен коричневый карлик. На сегодняшний день открыто достаточно много звезд подобного типа. Их спектральный класс М - T. В теории выделяется ещё один класс - обозначаемый Y.

Белые карлики

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга - Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара - как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера - Волкова - как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями - вспышками сверхновых.
Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

Красные гиганты

Красные гиганты и сверхгиганты - это звёзды с довольно низкой эффективной температурой (3000 - 5000 К), однако с огромной светимостью. Типичная абсолютная звёздная величина таких объектов?3m-0m(I и III класс светимости). Для их спектра характерно присутствие молекулярных полос поглощения, а максимум излучения приходится на инфракрасный диапазон.

Переменные звёзды

Переменная звезда - это звезда, за всю историю наблюдения которой хоть один раз менялся блеск. Причин переменности много и связаны они могут быть не только с внутренними процессами: если звезда двойная и луч зрения лежит или находится под небольшим углом к полю зрения, то одна звезда, проходя по диску звезды, будет его затмевать, также блеск может измениться, если свет от звезды пройдет сквозь сильное гравитационное поле. Однако в большинстве случаев переменность связана с нестабильными внутренними процессами. В последней версии общего каталога переменных звезд принято следующее деление:
Эруптивные переменные звёзды - это звёзды, изменяющие свой блеск в силу бурных процессов и вспышек в их хромосферах и коронах. Изменение светимости происходит обычно вследствие изменений в оболочке или потери массы в форме звёздного ветра переменной интенсивности и/или взаимодействия с межзвёздной средой.
Пульсирующие переменные звёзды - это звёзды, показывающие периодические расширения и сжатия своих поверхностных слоёв. Пульсации могут быть радиальными и не радиальными. Радиальные пульсации звезды оставляют её форму сферической, в то время как не радиальные пульсации вызывают отклонение формы звезды от сферической, а соседние зоны звезды могут быть в противоположных фазах.
Вращающиеся переменные звёзды - это звёзды, у которых распределение яркости по поверхности неоднородно и/или они имеют неэлипсоидальную форму, вследствие чего при вращении звёзд наблюдатель фиксирует их переменность. Неоднородность яркости поверхности может быть вызвана наличием пятен или температурных или химических неоднородностей, вызванных магнитными полями, чьи оси не совпадают с осью вращения звезды.
Катаклизмические (взрывные и новоподобные) переменные звёзды . Переменности этих звёзд вызвана взрывами, причиной которых являются взрывные процессы в их поверхностных слоях (новые) или глубоко в их недрах (сверхновые).
Затменно-двойные системы.
Оптические переменные двойные системы с жёстким рентгеновским излучением
Новые типы переменных - типы переменности, открытые в процессе издания каталога и поэтому не попавшие в уже изданные классы.

Новые

Новая звезда - тип катаклизмических переменных. Блеск у них меняется не так резко, как у сверхновых (хотя амплитуда может составлять 9m): за несколько дней до максимума звезда лишь на 2m слабее. Количество таких дней определяет, к какому классу новых относится звезда:
Очень быстрые, если это время (обозначаемое как t2) меньше 10 дней.
Быстрые - 11 Очень медленные: 151 Предельно медленные, находящие вблизи максимума годами.

Существует зависимость максимума блеска новой от t2. Иногда эту зависимость используют для определения расстояния до звезды. Максимум вспышки в разных диапазонах ведет себя по-разному: когда в видимом диапазоне уже наблюдается спад излучения, в ультрафиолете все ещё продолжается рост. Если наблюдается вспышка и в инфракрасном диапазоне, то максимум будет достигнут только после того, как блеск в ультрафиолете пойдет на спад. Таким образом, болометрическая светимость во время вспышки довольно долго остается неизменной.

В нашей Галактике можно выделить две группы новых: новые диска (в среднем они ярче и быстрее), и новые балджа, которые немного медленнее и, соответственно, немного слабее.

Сверхновые

Сверхновые звёзды - звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Термином «сверхновые» были названы звёзды, которые вспыхивали гораздо (на порядки) сильнее так называемых «новых звёзд». На самом деле, ни те, ни другие физически новыми не являются, всегда вспыхивают уже существующие звёзды. Но в нескольких исторических случаях вспыхивали те звёзды, которые ранее были на небе практически или полностью не видны, что и создавало эффект появления новой звезды. Тип сверхновой определяется по наличию в спектре вспышки линий водорода. Если он есть, значит сверхновая II типа, если нет - то I типа

Гиперновые

Гиперновая - коллапс исключительно тяжёлой звезды после того, как в ней больше не осталось источников для поддержания термоядерных реакций; другими словами, это очень большая сверхновая. С начала 1990-х годов были замечены столь мощные взрывы звёзд, что сила взрыва превышала мощность взрыва обычной сверхновой примерно в 100 раз, а энергия взрыва превышала 1046 джоулей. К тому же многие из этих взрывов сопровождались очень сильными гамма-всплесками. Интенсивное исследование неба нашло несколько аргументов в пользу существования гиперновых, но пока что гиперновые являются гипотетическими объектами. Сегодня термин используется для описания взрывов звёзд с массой от 100 до 150 и более масс Солнца. Гиперновые теоретически могли бы создать серьёзную угрозу Земле вследствие сильной радиоактивной вспышки, но в настоящее время вблизи Земли нет звёзд, которые могли бы представлять такую опасность. По некоторым данным, 440 миллионов лет назад имел место взрыв гиперновой звезды вблизи Земли. Вероятно, короткоживущий изотоп никеля 56Ni попал на Землю в результате этого взрыва.

Нейтронные звёзды

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 280 трлн. раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Во Вселенной триллионы звезд. Большинство из них мы даже не видим, а те, что доступны нашему глазу, могут быть яркими или очень тусклыми, в зависимости от размера и прочих свойств. Что мы знаем о них? Какая звезда самая маленькая? Какая самая горячая?

Звезды и их разновидности

Наша Вселенная переполнена интересными объектами: планетами, звездами, туманностями, астероидами, кометами. Звезды представляют собой массивные шары из газов. Равновесие им помогает удерживать сила собственной гравитации. Как и все космические тела, они перемещаются в пространстве, но из-за большого расстояния это трудно заметить.

Внутри звезд происходят термоядерные реакции, благодаря чему они излучают энергию и свет. Их яркость значительно колеблется и измеряется в звездых величинах. В астрономии каждой величине соответствует определенный номер, а чем он меньше, тем меньше яркость звезды. Самая маленькая звезда по величине называется карликом, также существуют нормальные звезды, гиганты и сверхгиганты.

Кроме яркости, они имеют и температуру, благодаря которой, звезды излучают различный спектр. Наиболее горячие имеют синий цвет, затем (в порядке убывания) следуют голубые, белые, желтые, оранжевые и красные. Звезды, которые не укладываются ни в один из этих параметров, называются пекулярными.

Самые горячие звезды

Когда речь идет о температуре звезд, в виду имеются поверхностные характеристики их атмосфер. Внутреннюю температуру можно узнать только при помощи вычислений. Насколько звезда горячая можно судить по её цвету или спектральному классу, который обычно обозначается буквами O, B, A, F, G, K, M. Каждый из них подразделяется на десять подклассов, которые обозначаются цифрами от 0 до 9.

Класс О относится к наиболее горячим. Их температура колеблется от 50 до 100 тысяч градусов Цельсия. Однако недавно ученые окрестили самой горячей звездой туманность Бабочки, температура которой достигает 200 тысяч градусов.

Другими горячими звездами являются голубые свергиганты, например, Ригель Ориона, Альфа Жирафа, Гамма Холодные звезды являются карликами класса М. Самой холодной во Вселенной считается WISE J085510.83-071442. Температура звезды доходит до -48 градусов.

Карликовые звезды

Карлик - прямая противоположность сверхигантов, самая маленькая звезда по величине. Они имеют небольшие размеры и светимость, могут быть даже меньше Земли. Карлики составляют 90 % звезд нашей галактики. Они значительно меньше Солнца, однако, превосходят по Невооруженным глазом их практически невозможно разглядеть на ночном небе.

Наименьшими считаются красные карлики. Они имеют скромную массу и по сравнению с другими звездами являются холодными. Их спектральный класс обозначается буквами М и К. Температура может достигать от 1 500 до 1 800 градусов Цельсия.

Звезда 61 в созвездии Лебедя - самая маленькая звезда из тех, что можно заметить без профессиональной оптики. Она излучает тусклый свет и находится на расстоянии 11,5 световых лет. Чуть больше по размеру является оранжевый карлик Расположена на расстоянии десяти световых лет.

Ближе всего к нам находится Проксима в человек смог бы добраться до неё только через 18 тысяч лет. Это красный карлик, который в 1,5 раз больше Юпитера. От Солнца она расположена всего в 4,2 световых года. Светило окружено и другими мелкими звездами, однако они не изучены из-за небольшой яркости.

Какая из звезд самая маленькая?

Нам знакомы далеко не все звезды. Только в галактике Млечный Путь их насчитывается сотни миллиардов. Конечно, ученые изучили только малую их часть. Известная на сегодняшний день самая маленькая звезда во Вселенной носит название OGLE-TR-122b.

Она относится к двойной то есть связана гравитационным полем с другой звездой. Их взаимное вращение вокруг масс друг друга составляет семь с половиной суток. Система открыта в 2005 году в ходе Оптического гравитационно-линзового эксперимента, от английской аббревиатуры которого она и была названа.

Самая маленькая звезда является красным карликом в в южном полушарии неба. Её радиус составляет 0,12 от солнечного, а масса 0,09. По массе она превосходит Юпитер в сто раз, а по плотности больше Солнца в 50 раз.

Обнаружение этой звездной системы подтвердило теорию ученых о том, что звезда может ненамного превышать размеры средней планеты, если её масса будет хотя бы в десять раз меньше солнечной. Скорее всего во Вселенной существуют и более мелкие звезды, но современная техника не позволяет их увидеть.

На вопрос звезды (которые на небе) горячие или холодные? заданный автором Екатерина лучший ответ это Все звезды по температуре и соответственно по спектральному классу делятся на 7 классов: OBAFGKM. Самые горячие - голубые O (от 30 до 60 тыс. градусов) , самые холодные - оранжево-красного цвета M (от 3 до 4,5 тыс. градусов) .
Последовательность спектральных классов легко запомнить с помощью фразы
"один бритый англичанин финики жевал как морковь".
Тут первая буква каждого слова, в транскрипции на английский - название спектрального класса в порядке их последовательности.
Наше Солнце - класса G (точнее, G2 - в каждом классе есть еще числовые подклассы).

Ответ от философ [гуру]
Горячие, на то они и звёзды!


Ответ от Коротеев Александр [гуру]
Всё в сравнении.
Если сравнивать их температуру (даже поверхности) с "комфортной" для человека - они все ОЧЕНЬ горячие.
Если уж светят - значит горячие - потому что светят за счёт теплового излучения, а чтобы излучать в оптическом диапазоне - нужны тысячи градусов.
Если сравнивать с Солнцем - большинство видимых глазу звёзд больше и горячее Солнца.
Если сравнивать между собой - можно выделить те, что погорячее и те, что похолоднее. Последние не то, чтобы холодные - ну как кипящая вода по сравнению с кипящим маслом. Первое холоднее, конечно же, но что-то я не слышал, чтобы кто-то, ошпарившись, радовался, что не маслом.
>^.^<


Ответ от Коростель [эксперт]
Вы все равно "на глаз" не скажете уверенно "холодная" звезда или "горячая", связано это с эффектом Доплера. Иными словами звезда может двигаться от вас или к вам и в зависимости от этого "видимый цвет звезды" может быть более красным или более голубым соответственно. Правда стоит отметить что на глаз смещение спектральной линии будет возможно и не заметным, но и этого хватит что бы ошибиться на пару тысяч градусов в легкую, а то и больше чем на десяток. И уж точно если "выключить" солнце они Вас не согреют, поэтому звезды на небе холоднее самого холодного седла унитаза на котором вы когда либо сидели. =)


Ответ от Невроз [гуру]
если это метеорит то горячие из-за движения быстрого. а вообще самая горячая "звезда" это солнце, а остальные холодные по сравнению с ней.


Ответ от Leto [гуру]
Цвет звёзд определяется их спектральным классом. Спектральных классов шесть. Называю четыре основных:
Самые холодные красные звёзды - холоднее солнца нашего - на поверхности температура около 4 тыс градусов (у нашего солнца 6 тыс. - оно жёлтого цвета) . Самые горячие белые звезды до 10 тыс. температура на поверхности. Голубые чуть холоднее.


Ответ от НеДоТрога [гуру]
С красным оттенком - холодные, с голубым - горячие



Ответ от Art [гуру]
холодные.... чем ярче звезда тем она холоднее..


Ответ от Ѐоман Михащук [активный]
Очень Горячие из плазмы


Ответ от Vladimir buhvestov [эксперт]
Все звёзды на небе холодные


Ответ от Марко Поло [гуру]
Звезды - холодные.
В доказательство привожу отрывок:
"И звезды по небу стучали,
Как дождь о черное стекло,
И, скатываясь, остужали
Ее горячее чело... "
Сказано так, что веришь каждой детали, а если звезды остужают, значит, это кому-нибудь нужно...