16.01.2024

Как запомнить Цикл Кребса: мнемотехники и стихи для запоминания. Цикл Кребса: что это такое простым языком В цикле кребса происходит


ЦИКЛ ТРИКАРБОНОВЫХ КИСЛОТ (ЦИКЛ КРЕБСА)

Гликолиз превращает глюкозу в пируват и продуцирует две молекулы АТФ из молекулы глюкозы - это небольшая часть потенциальной энергии этой молекулы.

При аэробных условиях пируват из гликолиза превращается в ацетил-КоА и окисляется в С0 2 в цикле трикарбоновых кислот (цикл лимонной кислоты). При этом электроны, освобождающиеся в реакциях этого цикла, проходят НАДН и ФАДН 2 на 0 2 - конечный акцептор. Электронный транспорт сопряжен с созданием протонного градиента мембраны митохондрий, энергия которого используется затем на синтез АТФ в результате окислительного фосфорилирования. Рассмотрим эти реакции.

В аэробных условиях пировиноградная кислота (1-й этап) подвергается окислительному декарбоксилированию, более эффективному, чем трансформация в молочную кислоту, с образованием ацетил-КоА (2-й этап), который может окисляться до конечных продуктов распада глюкозы - С0 2 и Н 2 0 (3-й этап). Г. Кребс (1900-1981), немецкий биохимик, изучив окисление отдельных органических кислот, объединил их реакции в единый цикл. Поэтому в его честь цикл трикарбоновых кислот часто называют циклом Кребса.

Окисление пировиноградной кислоты до ацетил-КоА происходит в митохондриях при участии трех ферментов (пируватде- гидрогеназа, липоамиддегидрогеназа, липоилацетилтрансфера- за) и пяти коферментов (НАД, ФАД, тиаминпирофосфат, амид липоевой кислоты, коэнзим А). В составе этих четырех коферментов находятся витамины группы В (В х, В 2 , В 3 , В 5), что свидетельствует о необходимости этих витаминов для нормального окисления углеводов. Под влиянием этой сложной ферментной системы пируват в реакции окислительного декарбоксилирования превращается в активную форму уксусной кислоты - ацетил- коэнзим А:

При физиологических условиях пируватдегидрогеназа - исключительно необратимый фермент, что объясняет невозможность конверсии жирных кислот в углеводы.

Наличие макроэргической связи в молекуле ацетил-КоА указывает на высокую реакционную способность этого соединения. В частности, ацетил-КоА может выступать в митохондриях для генерации энергии, в печени избыток ацетил-КоА поступает на синтез кетоновых тел, в цитозоле участвует в синтезах сложных молекул, таких как стериды и жирные кислоты.

Полученный в реакции окислительного декарбоксилирова- ния пировиноградной кислоты ацетил-КоА вступает в цикл три- карбоновых кислот (цикл Кребса). Цикл Кребса - финальный катаболический путь окисления углеводов, жиров, аминокислот, является по существу «метаболическим котлом». Реакции цикла Кребса, протекающие исключительно в митохондриях, также носят название цикла лимонной кислоты или цикла три- карбоновых кислот (ЦТК).

Одной из важнейших функций цикла трикарбоновых кислот является генерация восстановленных коферментов (3 молекулы НАДН + Н + и 1 молекула ФАДН 2) с последующим переносом атомов водорода или их электронов к конечному акцептору - молекулярному кислороду. Этот транспорт сопровождается большим уменьшением свободной энергии, часть которой используется в процессе окислительного фосфорилирования для запасания в форме АТФ. Понятно, что цикл трикарбоновых кислот является аэробным, зависимым от кислорода.

1. Начальная реакция цикла трикарбоновых кислот представляет конденсацию ацетил-КоА и щавелево-уксусной кислоты с участием фермента цитратсинтазы митохондриального матрикса с образованием лимонной кислоты.

2. Под влиянием фермента аконитазы, катализирующего удаление молекулы воды из цитрата, последний превращается


в цыс-аконитовую кислоту. Вода комбинирует с цыс-аконито- вой кислотой, превращаясь в изолимонную.

3. Затем фермент изоцитратдегидрогеназа катализирует первую дегидрогеназную реакцию цикла лимонной кислоты, когда изолимонная кислота превращается в реакции окислительного декарбоксилирования в а-кетоглутаровую:

В этой реакции образуется первая молекула С0 2 и первая молекула НАДН 4- Н + цикла.

4. Дальнейшее превращение а-кетоглутаровой кислоты в сукцинил-КоА катализируется мультиферментным комплексом а-кетоглутаровой дегидрогеназы. Эта реакция химически является аналогом пируватдегидрогеназной реакции. В ней участвуют липоевая кислота, тиаминпирофосфат, HS-KoA, НАД + , ФАД.

В результате этой реакции вновь образуется молекула НАДН + Н + и С0 2 .

5. Молекула сукцинил-КоА имеет макроэргическую связь, энергия которой сохраняется в следующей реакции в форме ГТФ. Под влиянием фермента сукцинил-КоА-синтетазы сукци- нил-КоА превращается в свободную янтарную кислоту. Отметим, что янтарная кислота также может быть получена из ме- тилмалонил-КоА при окислении жирных кислот с нечетным числом атомов углерода.

Эта реакция является примером субстратного фосфорилирования, так как макроэргическая молекула ГТФ в данном случае образуется без участия цепи транспорта электронов и кислорода.

6. Янтарная кислота окисляется в фумаровую кислоту в сук- цинатдегидрогеназной реакции. Сукцинатдегидрогеназа, типичный железосеросодержащий фермент, коферментом которого является ФАД. Сукцинатдегидрогеназа - единственный фермент, фиксируемый на внутренней митохондриальной мембране, тогда как все другие ферменты цикла находятся в митохондриальном матриксе.

7. Затем следует гидратация фумаровой кислоты в яблочную кислоту под влиянием фермента фумаразы в обратимой реакции при физиологических условиях:

8. Финальной реакцией цикла трикарбоновых кислот является малатдегидрогеназная реакция с участием активного фермента митохондриальной НАД~-зависимой малатдегидро- геназы, в которой образуется третья молекула восстановленного НАДН + Н + :


Образованием щавелево-уксусной кислоты (оксалоацетата) завершается один оборот цикла трикарбоновых кислот. Щавелево-уксусная кислота может быть использована в окислении второй молекулы ацетил-КоА, и этот цикл реакций может неоднократно повторяться, постоянно приводя к получению щавелево-уксусной кислоты.

Таким образом, окисление в ЦТК одной молекулы ацетил- КоА как субстрата цикла приводит к получению одной молекулы ГТФ, трех молекул НАДФ + Н + и одной молекулы ФАДН 2 . Окисление этих восстановителей в цепи биологического окис-


ления приводит к синтезу 12 молекул АТФ. Этот расчет понятен из темы «Биологическое окисление»: включение одной молекулы НАД + в систему транспорта электронов сопровождается в конечном счете образованием 3 молекул АТФ, включение молекулы ФАДН 2 обеспечивает образование 2 молекул АТФ и одна молекула ГТФ эквивалентна 1 молекуле АТФ.

Отметим, что два атома углерода адетил-КоА вступают в цикл трикарбоновых кислот и два атома углерода покидают цикл в виде С0 2 в реакциях декарбоксилирования, катализируемых изоцитратдегидрогеназой и альфа-кетоглутарат-дегид- рогеназой.

При полном окислении молекулы глюкозы в аэробных условиях до С0 2 и Н 2 0 образование энергии в форме АТФ составляет:

  • 4 молекулы АТФ при конверсии молекулы глюкозы в 2 молекулы пировиноградной кислоты (гликолиз);
  • 6 молекул АТФ, образующиеся в 3-фосфоглицеральдегид- дегидрогеназной реакции (гликолиз);
  • 30 молекул АТФ, образующиеся при окислении двух молекул пировиноградной кислоты в пируватдегидрогеназной реакции и в последующих превращениях двух молекул аце- тил-КоА до С0 2 и Н 2 0 в цикле трикарбоновых кислот. Следовательно, общий выход энергии при полном окислении молекулы глюкозы может составлять 40 молекул АТФ. Однако следует принять во внимание, что при окислении глюкозы на стадии превращения глюкозы в глюкозо-6-фосфат и на стадии превращения фруктозо-6-фосфата во фруктозо-1,6-дифосфат затрачено две молекулы АТФ. Поэтому «чистый» выход энергии при окислении молекулы глюкозы составляет 38 молекул АТФ.

Можно сравнить энергетику анаэробного гликолиза и аэробного катаболизма глюкозы. Из 688 ккал энергии, теоретически заключенных в 1 грамм-молекуле глюкозы (180 г), 20 ккал находятся в двух молекулах АТФ, образующихся в реакциях анаэробного гликолиза, и 628 ккал теоретически остаются в форме молочной кислоты.

В аэробных условиях из 688 ккал грамм-молекулы глюкозы в 38 молекулах АТФ получено 380 ккал. Таким образом, эффективность использования глюкозы в аэробных условиях выше, чем в анаэробном гликолизе, примерно в 19 раз.

Следует указать, что все реакции окисления (окисление три- озофосфата, пировиноградной кислоты, четыре реакции окисления цикла трикарбоновых кислот) конкурируют в синтезе АТФ из АДФ и Ф неор (эффект Пастера). Это значит, что образующаяся молекула НАДН + Н + в реакциях окисления имеет выбор между реакциями дыхательной системы, переносящими водород на кислород, и ферментом ЛДГ, передающим водород на пировиноградную кислоту.

На ранних стадиях цикла трикарбоновых кислот его кислоты могут выходить из цикла для участия в синтезе других соединений клетки без нарушений функционирования самого цикла. Различные факторы вовлекаются в регуляцию активности цикла трикарбоновых кислот. Среди них в первую очередь следует назвать поступление молекул ацетил-КоА, активность пируватдегидрогеназного комплекса, активность компонентов дыхательной цепи и сопряженное с ней окислительное фосфорилирование, а также уровень щавелево-уксусной кислоты.

Молекулярный кислород непосредственно не участвует в цикле трикарбоновых кислот, однако его реакции осуществляются только в аэробных условиях, так как НАД~ и ФАД могут быть регенерированы в митохондриях лишь при переносе электронов на молекулярный кислород. Следует подчеркнуть, что гликолиз, в отличие от цикла трикарбоновых кислот, возможен и при анаэробных условиях, так как НАД~ регенерируется при переходе пировиноградной кислоты в молочную.

Помимо образования АТФ, цикл трикарбоновых кислот имеет еще одно важное значение: цикл обеспечивает структурами-посредниками различные биосинтезы организма. Например, большинство атомов порфиринов происходит из сукцинил- КоА, многие аминокислоты являются производными а-кето- глутаровой и щавелево-уксусной кислот, а фумаровая кислота имеет место в процессе синтеза мочевины. В этом проявляется интегральность цикла трикарбоновых кислот в обмене углеводов, жиров, белков.

Как показывают реакции гликолиза, способность большинства клеток генерировать энергию заключена в их митохондриях. Число митохондрий в различных тканях связано с физиологическими функциями тканей и отражает их возможность участия в аэробных условиях. Например, эритроциты не имеют митохондрий и, следовательно, не обладают способностью генерировать энергию, используя кислород как конечный акцептор электронов. Однако в сердечной мышце, функционирующей в аэробных условиях, половина объема цитоплазмы клеток представлена митохондриями. Печень также зависит от аэробных условий для своих различных функций, и гепатоциты млекопитающих содержат до 2 тыс. митохондрий в одной клетке.

Митохондрии включают две мембраны - внешнюю и внутреннюю. Внешняя мембрана более простая, состоящая из 50% жиров и 50% белков, имеет сравнительно мало функций. Внутренняя мембрана структурно и функционально представляется более сложной. Примерно 80% ее объема составляют белки. Она содержит большинство ферментов, участвующих в электронном транспорте и окислительном фосфорилировании, метаболические посредники и аденин-нуклеотиды между цитозолем и митохондриальным матриксом.

Различные нуклеотиды, вовлекаемые в окислительно-восстановительные реакции, такие как НАД + , НАДН, НАДФ + , ФАД и ФАДН 2 , не проникают сквозь внутреннюю митохондриальную мембрану. Ацетил-КоА не может поступать из митохондриального отдела в цитозоль, где он требуется для синтеза жирных кислот или стеролов. Поэтому внутримитохондри- альный ацетил-КоА конвертируется в цитрат-синтазной реакции цикла трикарбоновых кислот и в таком виде поступает в цитозоль.

Краткие исторические сведения

Наш любимый цикл – ЦТК, или Цикл трикарбоновых кислот – жизнь на Земле и под Землей и в Земле… Стоп, а вообще это самый удивительный механизм – он универсален, является путем окисления продуктов распада углеводов, жиров, белков в клетках живых организмов, в результате получаем энергию для деятельности нашего тела.

Открыл этот процесс собственно Кребс Ганс, за что и получил Нобелевскую премию!

Родился он в августе 25 - 1900 года в Германии город Хильдесхайм. Получил медицинское образование Гамбургского университета, продолжил биохимические исследования под руководством Отто Вaрбурга в Берлине.

В 1930 открыл вместе со студентом своим процесс обезвреживания аммиака в организме, который был у многих представителей живого мира, в том числе и человека. Этот цикл – цикл образования мочевины, который также известен под именем цикла Кребса №1.

Когда к власти пришел Гитлер, Ганс эмигрировал в Великобританию, где продолжает заниматься наукой в Кембриджском и Шеффилдском университетах. Развивая исследования биохимика из Венгрии Альберта Сент-Дьёрди, получает озарение и делает самый знаменитый цикл Кребса № 2, или по-другому "цикл Сент-Дьёрди – Кребса" - 1937.

Результаты исследований посылаются в журнал "Nature", который отказывает в напечатании статьи. Тогда текст перелетает в журнал "Enzymologia" в Голландии. Кребс получает Нобелевскую премию в 1953 по физиологии и медицине.

Открытие было удивительным: в 1935 Сент-Дьёрди находит, что янтарная, оксалоуксусная, фумаровая и яблочная кислоты (все 4 кислоты - естественные химические компоненты клеток животных) усиливают процесс окисления в грудной мышце голубя. Которая была измельчена.

Именно в ней процессы метаболические идут с наибольшей скоростью.

Ф. Кнооп и К.Мартиус в 1937 году находят, что лимонная кислота превращается в изолимонную через продукт промежуточный, цис – аконитовую кислоту. Кроме того изолимонная кислота могла превращаться в а-кетоглутаровую, а та – в янтарную.

Кребс заметил действие кислот на поглощение О2 грудной мышцей голубя и выявил из активирующее действие на окисление ПВК и образование Ацетил-Коэнзима А. Кроме того процессы в мышце угнетались малоновой кислотой, которая похожа на янтарную и могла конкурентно ингибировать ферменты, у которых субстрат – янтарная кислота.

Когда Кребс добавлял малоновую кислоту к среде реакции, то начиналось накопление а-кетоглутаровой, лимонной и янтарной кислот. Таким образом понятно, что действие совместное а-кетоглутаровой, лимонной кислот приводит к образованию янтарной.

Ганс исследовал еще более 20 веществ, но они не влияли на окисление. Сопоставив полученные данные, Кребс получил цикл. В самом начале исследователь не мог точно сказать начинается процесс с лимонно или изолимонной кислоты, поэтому назвал "цикл трикарбоновых кислот".

Сейчас мы знаем, что первой является лимонная кислота, поэтому правильно - цитратный цикл или цикл лимонной кислоты.

У эукариот реакции ЦТК протекают в митохондриях, при этом все ферменты для катализа, кроме 1, содержатся в свободном состоянии в матриксе митохондрии, исключение - сукцинатдегидрогеназа - локализуется на внутренней мембране митохондрии, встраивается в липидный бислой. У прокариот реакции цикла протекают в цитоплазме.

Познакомимся с участниками цикла:

1) Ацетил-Коэнзим А:
- ацетильная группа - Acetyl group
- коэнзим А - Coenzyme A:

2) ЩУК – Оксалоацетат - Щавелево-Уксусная кислота:
как бы состоит из двух частей: щавелевая и уксусная кислота.

3-4) Лимонная и Изолимонная кислоты:

5) а-Кетоглутаровая кислота:

6) Сукцинил-Коэнзим А:

7) Янтарная кислота:

8) Фумаровая кислота:

9) Яблочная кислота:

Как же происходят реакции? В целом мы все привыкли к виду кольца, что и представлено снизу на картинке. Еще ниже все расписано по этапам:

1. Конденсация Ацетил-Коэнзима А и Щавелево-Уксусной кислоты ➙ лимонная кислота.

Превращение Ацетил-Коэнзима А берут начало с конденсации со Щавелево-Уксусной кислотой, в результате образуется лимонная кислота.

Реакция не требует расхода АТФ, так как энергия для этого процесса обеспечивается в результате гидролиза тиоэфирной связи с Ацетил-Коэнзимом А, которая является макроэргической:

2. Лимонная кислота через цис-аконитовую переходит в изолимонную.

Происходит изомеризация лимонной кислоты в изолимонную. Фермент превращения - аконитаза - дегидратирует вначале лимонную кислоту с образованием цис-аконитовой кислоты, потом соединяет воду к двойной связи метаболита, образуя изолимонную кислоту:

3. Изолимонная дегидрируется с образованием а-кетоглутаровой и СО2.

Изолимонная кислота окисляется специфической дегидрогеназой, кофермент которой - НАД.

Одновременно с окислением идет декарбоксилирование изолимонной кислоты. В результате превращений образуется α-кетоглутаровая кислота.

4. Альфа-кетоглутаровая кислота дегидрируется ➙ сукцинил-коэнзим А и СО2.

Следующая стадия - окислительное декарбоксилирование α-кетоглутаровой кислоты.

Катализируется α-кетоглутаратдегидрогеназным комплексом, который аналогичен по механизму, структуре и действию пируватдегидрогеназному комплексу. В результате образуется сукцинил-КоА.

5. Сукцинил-коэнзим А ➙ янтарная кислота.

Сукцинил-КоА гидролизуется до свободной янтарной кислоты, выделяющаяся энергия сохраняется путем образования гуанозинтрифосфата. Эта стадия - единственная в цикле, прикоторой прямо выделится энергия.

6. Янтарная кислота дегидрируется ➙ фумаровая.

Дегидрирование янтарной кислоты ускоряется сукцинатдегидрогеназой, коферментом ее является ФАД.

7. Фумаровая гидратируется ➙ яблочная.

Фумаровая кислота, которая образуется при дегидрировании янтарной кислоты, гидратируется и образуется яблочная.

8. Яблочная кислота дегидрируется ➙ Щавелево-Уксусная - цикл замыкается.

Заключительный процесс - дегидрирование яблочной кислоты, катализируемое малатдегидрогеназой;

Результат стадии - метаболит, с которого начинается цикл трикарбоновых кислот - Щавелево-Уксусная кислота.

В 1 реакцию следующего цикла вступит другая м-ла Ацетил-Коэнзима А.

Как запомнить этот цикл? Просто!

1) Очень образное выражение:
Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует- цитрат, цис-аконитат, изоцитрат, (альфа-)кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат.

2) Другое длинное стихотворение:

ЩУКа съела ацетат, получается цитрaт,
Через цисaконитaт будет он изоцитрaт.
Вoдoрoды отдaв НАД, oн теряет СО2,
Этoму безмернo рaд aльфa-кетоглутaрaт.
Окисление грядет - НАД похитил вoдoрoд,
ТДФ, коэнзим А забирают СО2.
А энергия едва в сукциниле пoявилась,
Сразу АТФ рoдилась и oстался сукцинат.
Вот дoбрался он дo ФАДа - вoдoрoды тому надo,
Фумарат воды напился, и в малат oн превратился.
Тут к малату НАД пришел, вoдoрoды приобрел,
ЩУКа снoва oбъявилась и тихoнькo затаилась.

3) Оригинальное стихотворение – покороче:

ЩУКу АЦЕТИЛ ЛИМOНил,
Нo нарЦИСсA КOНь боялся,
Oн над ним ИЗOЛИМOННо
AЛЬФA - КЕТOГЛУТAРался.
CУКЦИНИЛся КOЭНЗИМом,
ЯНТAРился ФУМАРOВo,
ЯБЛОЧек припаc на зиму,
Обернулcя ЩУКой снова.

Цикл трикарбоновых кислот (цикл Кребса, цитратный цикл) - центральная часть общего пути катаболизма, т.е процесс обмена веществ, которые возникают в живом организме для поддержания жизни распада, разложения на более элементарные вещества или окисления какого-либо вещества, обычно протекающий с высвобождением энергии в виде тепла и в виде АТФ циклический биохимический аэробный процесс, в ходе которого происходит превращение двух- и трёхуглеродных соединений, образующихся как промежуточные продукты в живых организмах при распаде углеводов, жиров и белков, до CO2. При этом освобождённый водород устремляется в цепь тканевого дыхания, где в дальнейшем окисляется до воды, принимая прямое участие в синтезе универсального источника энергии - АТФ.

Это ключевой этап дыхания всех клеток, т.е совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды применяющих кислород, центр пересечения множества метаболических путей в организме. Кроме значительной энергетической роли циклу отводится также и основная пластическая функция, то есть это значительный источник молекул-предшественников, из которых в ходе других биохимических превращений синтезируются такие важные для жизнедеятельности клетки соединения как аминокислоты, углеводы, жирные кислоты и др.
Цикл превращения лимонной кислоты в живых клетках был открыт и изучен немецким биохимиком Хансом Кребсом, за эту работу он (совместно с Ф. Липманом) был удостоен Нобелевской премии (1953 год).

При работе цикла Кребса окисляются различные продукты обмена, в частности токсичные недоокисленные продукты распада алкоголя, поэтому стимуляцию цикла Кребса можно рассматривать как меру биохимической детоксикации.

Регулируется «по механизму отрицательной обратной связи», при наличии большого количества субстратов (ацетил-КоА, оксалоацетат), цикл активно работает, а при избытке продуктов реакции (NADH, ATP) тормозится. Регуляция осуществляется и при помощи гормонов, основным источником ацетил-КоА является глюкоза, поэтому гормоны, способствующие аэробному распаду глюкозы, способствуют работе цикла Кребса. Такими гормонами являются: инсулин и адреналин. Глюкагон стимулирует синтез глюкозы и ингибирует реакции цикла Кребса.

Функции
1. Интегративная функция - цикл является связующим звеном между реакциями анаболизма и катаболизма.
2. Катаболическая функция - превращение различных веществ в субстраты цикла:
o Жирные кислоты, пируват,Лей,Фен - Ацетил-КоА.
o Арг, Гис, Глу - α-кетоглутарат.
o Фен, тир - фумарат.
3. Анаболическая функция - использование субстратов цикла на синтез органических веществ:
o Оксалацетат - глюкоза, Асп, Асн.
o Сукцинил-КоА - синтез гема.
o CО2 - реакции карбоксилирования.
4. Водорододонорная функция - цикл Кребса поставляет на дыхательную цепь митохондрий протоны в виде трех НАДН.Н+ и одного ФАДН2.
5. Энергетическая функция - 3 НАДН.Н+ дает 7.5 моль АТФ, 1 ФАДН2 дает 1.5 моль АТФ на дыхательной цепи. Кроме того в цикле путем субстратного фосфорилирования синтезируется 1 ГТФ, а затем из него синтезируется АТФ посредствам трансфосфорилирования: ГТФ + АДФ = АТФ + ГДФ.

Вывод

Из всего выше сказанного следует что цикл Кребса является важным компонентом в производстве большого количества клеточной энергии. Использования цикла важно для обеспечения того, чтобы у вас было достаточное количество энергии в течение длительных тренировок. Потому что есть очень много шагов для повышения эффективности этого цикла, что выгодно спортсменов и бодибилдеров. Спортивные добавки могут способствовать аэробному производству энергии за счет увеличения скорости окислительного производства АТФ во время тренировки, и скорость восстановления после тренировки.

Цикл Кребса и бодибилдинг
Цикл Кребса является самой важной системой производства энергии в повседневной жизни. Он является основным производителем энергии в состоянии покоя и с низким уровнем умеренной интенсивности упражнений и большей продолжительностью упражнений. Повышения его эффективности в производстве большей энергии, может помочь вам, как культуристу получить больше, обеспечивая мышцам меньшую усталость и увеличение производительности. Сегодня производители спортивного питания предлагают большой выбор добавок на основе различных компонентов увеличивающих окислительные реакции в организме. Это различные виды креатинов, аргинина, и многое другое.



Купить Вы можете в интернет магазине спортивного питания Fitness Live

Продолжаем разбирать цикл Кребса. В прошлой статье я рассказывал о том, что это вообще такое, для чего цикл Кребса нужен и какое место в метаболизме он занимает. Теперь давайте приступим к самим реакциям этого цикла.

Сразу оговорюсь - лично для меня заучивание реакций было совершенно бессмысленным занятием до того, пока я не разобрал вышеуказанные вопросы. Но если вы уже разобрались с теорией, предлагаю перейти к практике.

Вы можете увидеть множество способов написания цикла Кребса. Чаще всего встречаются варианты вроде этого:

Но мне удобнее всего показался способ написания реакций из старого доброго учебника по биохимии от авторов Берёзова Т.Т. и Коровкина Б.В.

Уже знакомые нам Ацетил-КоА и Оксалоацетат соединяются и превращаются в цитрат, то есть в лимонную кислоту .

Вторая реакция

Теперь берём лимонную кислоту и превращаем её изолимонную кислоту . Другое название этого вещества - изоцитрат.

На самом деле, эта реакция идёт несколько сложнее, через промежуточную стадию - образование цис-аконитовой кислоты. Но я решил упростить, чтобы вы получше запомнили. При необходимости вы сможете добавить сюда недостающую ступень, если будете помнить всё остальное.

По сути, две функциональные группы просто поменялись местами.

Третья реакция

Итак, у нас получилась изолимонная кислота. Теперь её нужно декарбоксилировать (то есть отщипнуть COOH) и дегидрировать (то есть отщипнуть H) . Получившееся вещество - это a-кетоглутарат .

Эта реакция примечательна тем, что здесь образуется комплекс HAДH2. Это значит, что переносчик НАД подхватывает водород, чтобы запустить дыхательную цепь.

Мне нравится вариант реакций Цикла Кребса в учебнике Берёзова и Коровкина именно тем, что сразу отлично видно атомы и функциональные группы, которые участвуют в реакциях.

Четвёртая реакция

Снова как часы работает никотинАмидАденинДинуклеотид, то есть НАД . Это славный переносчик появляется здесь, как и в прошлом шаге, чтобы захватить водород и унести его в дыхательную цепь.

Кстати, получившееся вещество - сукцинил-КоА , не должно вас пугать. Сукцинат - это другое название янтарной кислоты, хорошо знакомой вам со времён биоорганической химии. Сукцинил-Коа - это соединение янтарной кислоты с коэнзимом-А. Можно сказать, что это эфир янтарной кислоты.

Пятая реакция

В прошлом шаге мы говорили, что сукцинил-КоА - это эфир янтарной кислоты. А теперь мы получим саму янтарную кислоту , то есть сукцинат, из сукцинила-КоА. Крайне важный момент: именно в этой реакции происходит субстратное фосфорилирование .

Фосфорилирование вообще (оно бывает окислительное и субстратное) - это добавление фосфорной группы PO3 к ГДФ или АТФ, чтобы получить полноценный ГТФ , или соответственно, АТФ. Субстратное отличается тем, что эта самая фосфорная группа отрывается от какого-либо вещества, её содержащую. Ну проще говоря, она переносится с СУБСТРАТА на ГДФ или АДФ. Поэтому и называется - «субстратное фосфорилирование».

Ещё раз: на момент начала субстратного фосфорилирования у нас имеется дифосфатная молекула - гуанозинДифосфат или аденозинДифосфат. Фосфорилирование заключается в том, что молекула с двумя остатками фосфорной кислоты - ГДФ или АДФ «достраивается» до молекулы с тремя остатками фосфорной кислоты, чтобы получились гуанозинТРИфосфат или аденозинТРИфосфат. Этот процесс происходит во время превращения сукцинила-КоА в сукцинат (то есть, в янтарную кислоту).

На схеме вы можете увидеть буквы Ф (н). Это значит «неорганический фосфат». Неорганический фосфат переходит от субстрата на ГДФ, чтобы в продуктах реакции был хороший, полноценный ГТФ. Теперь давайте посмотрим на саму реакцию:

Шестая реакция

Следующее превращение. На сей раз янтарная кислота, которую мы получили в прошлом этапе, превратится в фумарат , обратите внимание на новую двойную связь.

На схеме отлично видно, как в реакции участвует ФАД : этот неутомимый переносчик протонов и электронов подхватывает водород и утаскивает его непосредственно в дыхательную цепь.

Седьмая реакция

Мы уже на финишной прямой.

ЦИКЛ ТРИКАРБОНОВЫХ КИСЛОТ (ЦИКЛ КРЕБСА)

Предпоследняя стадия Цикла Кребса - это реакция превращения фумарата в L-малат. L-малат - это другое название L-яблочной кислоты , знакомой ещё с курса биоорганической химии.

Если вы посмотрите на саму реакцию, вы увидите, что, во-первых, она проходит в обе стороны, а во-вторых, её суть - гидратирование. То есть фумарат просто присоединяет к себе молекулу воды, в итоге получается L-яблочная кислота.

Восьмая реакция

Последняя реакция Цикла Кребса - это окисление L-яблочной кислоты до оксалоацетата, то есть до щавелевоуксусной кислоты . Как вы поняли, «оксалоацетат» и «щавелевоуксусная кислота» - это синонимы. Вы, наверное, помните, что щавелевоуксусная кислота является компонентом первой реакции цикла Кребса.

Здесь же отмечаем особенность реакции: образование НАДH2 , который понесёт электроны в дыхательную цепь. Не забудьте также реакции 3,4 и 6, там также образуются переносчики электронов и протонов для дыхательной цепи.

Как видите, я специально выделил красным цветом реакции, в ходе которых образуются НАДH и ФАДH2. Это очень важные вещества для дыхательной цепи. Зелёным я выделил реакцию, в рамках которой происходит субстратное фосфорилирование, и получается ГТФ.

Как это всё запомнить?

На самом деле, не так уж и сложно. Полностью прочитав две моих статьи, а также ваш учебник и лекции, вам нужно просто потренироваться писать эти реакции. Я рекомендую запомнить цикл Кребса блоками по 4 реакции. Напишите эти 4 реакции несколько раз, для каждой подбирая ассоциацию, подходящую именно вашей памяти.

Например, мне сразу очень легко запомнилась вторая реакция, в которой из лимонной кислоты (она, думаю, всем знакома с детства) образуется изолимонная кислота.

Вы можете так же использовать мнемонические запоминалки, такие как: «Целый Ананас И Кусочек Суфле Сегодня Фактически Мой Обед , что соответствует ряду - цитрат, цис -аконитат, изоцитрат, альфа-кетоглутарат, сукцинил-CoA, сукцинат, фумарат, малат, оксалоацетат». Есть ещё куча подобных.

Но, если честно, мне не нравились такие стихи практически никогда. По-моему, проще запомнить саму последовательность реакций. Мне отлично помогло разделение цикла Кребса на две части, каждую из которых я тренировался писать по несколько раз в час. Как правило, это происходило на парах вроде психологии или биоэтики. Это весьма удобно - не отвлекаясь от лекции, вы можете потратить буквально минутку, написав реакции так, как вы их запомнили, а затем сверить с правильным вариантом.

Кстати, в некоторых вузах на зачётах и экзаменах по биохимии преподаватели не требуют знания самих реакций. Нужно знать только что такое цикл Кребса, где он происходит, в чём его особенности и значение, и, разумеется, саму цепочку превращений. Только цепочку можно называть без формул, используя лишь названия веществ. Такой подход не лишён смысла, на мой взгляд.

Надеюсь, моё руководство по циклу трикарбоновых кислот вам помогло. А я хочу напомнить, что эти две статьи не являются полноценной заменой вашим лекциям и учебникам. Я написал их лишь для того, чтобы вы примерно понимали, что такое цикл Кребса. Если вы вдруг увидели какую-то ошибку в моём руководстве, пожалуйста, отпишитесь о ней в комментариях. Спасибо за внимание!

Цикл трикарбоновых кислот впервые был открыт английским биохимиком Кребсом. Он первым постулировал значение данного цикла для полного сгорания пирувата, главным источником которого является гликолитическое превращение углеводов. В дальнейшем было показано, что цикл трикарбоновых кислот является "фокусом", в котором сходятся практически все метаболические пути.

Итак, образовавшийся в результате окислительного декарбоксилирования пирувата ацетил-КоА вступает в цикл Кребса. Данный цикл состоит из восьми последовательных реакций (рис. 91). Начинается цикл с конденсации ацетил-КоА с оксалоацетатом и образования лимонной кислоты. (Как будет видно ниже, в цикле окислению подвергается собственно не ацетил-КоА, а более сложное соединение — лимонная кислота (трикарбоновая кислота). )

Затем лимонная кислота (шестиуглеродное соединение) путем ряда дегидрирований (отнятие водорода) и дскарбоксилирований (отщепление СО2) теряет два углеродных атома и снова в цикле Кребса появляется оксалоацетат (четырехуглеродное соединение), т. е. в результате полного оборота цикла молекула ацетил-КоА сгорает до СО2 и Н2О, а молекула оксалоацетата регенерируется. Ниже приводятся все восемь последовательных реакций (этапов) цикла Кребса.

В первой реакции, катализируемой ферментом цитратсинтазой, ацетил-КоА конденсируется с оксалоацетатом. В результате образуется лимонная кислота:

По-видимому, в данной реакции в качестве промежуточного продукта образуется связанный с ферментом цитрил-КоА. Затем последний самопроизвольно и необратимо гидролизуется с образованием цитрата и HS-KoA.

Во второй реакции цикла образовавшаяся лимонная кислота подвергается дегидратированию с образованием цис-аконитовой кислоты, которая, присоединяя молекулу воды, переходит в изолимонную кислоту. Катализирует эти обратимые реакции гидратации-дегидратации фермент аконитат-гидратаза:

В третьей реакции, которая, по-видимому, лимитирует скорость цикла Кребса, изолимонная кислота дегидрируется в присутствии НАД-зависимой изоцитратдегидрогеназы:

(В тканях существует два типа изоцитратдегидрогеназ: НАД- и НАДФ-зависимые. Установлено, что роль основного катализатора окисления изолимонной кислоты в цикле Кребса выполняет НАД-зависимая изоцитратдегидрогеназа. )

В ходе изоцитратдегидрогеназной реакции изолимонная кислота декарбоксилируется. НАД-зависимая изоцитратдегидрогеназа является аллостерическим ферментом, которому в качестве специфического активатора необходим АДФ. Кроме того, фермент для проявления своей активности нуждается в ионах Mg2+ или Мn2+.

В четвертой реакции происходит окислительное декарбоксилирование α-кетоглутаровой кислоты до сукцинил-КоА. Механизм этой реакции сходен с реакцией окислительного декарбоксилирования пирувата до ацетил-КоА. α-Кетоглутаратдегидрогеназный комплекс напоминает по своей структуре пируватдегидрогеназный комплекс. Как в одном, так и в другом случае в ходе реакции принимают участие пять коферментов: TДФ, амид липоевой кислоты, HS-KoA, ФАД и НАД. Суммарно данную реакцию можно написать так:

Пятая реакция катализируется ферментом сукцинил-КоА-синтетазой. В ходе этой реакции сукцинил-КоА при участии ГДФ и неорганического фосфата превращается в янтарную кислоту (сукцинат). Одновременно происходит образование высокоэргической фосфатной связи ГТФ1 за счет высокоэргической тиоэфирной связи сукцинил-КоА:

(Образовавшийся ГТФ отдает затем свою концевую фосфатную группу на АДФ, вследствие чего образуется АТФ. Образование высокоэргического нуклеозидтрифосфата в ходе сукцинил-КоА-синтетазной реакции — пример фосфорилирования на уровне субстрата. )

В шестой реакции сукцинат дегидрируется в фумаровую кислоту. Окисление сукцината катализируется сукцинатдегидрогеназой, в молекуле которой с белком ковалентно связан кофермент ФАД:

В седьмой реакции образовавшаяся фумаровая кислота гидратируется под влиянием фермента фумаратгидратазы. Продуктом данной реакции является яблочная кислота (малат). Следует отметить, что фумаратгидратаза обладает стереоспецифичностью, — в ходе данной реакции образуется L-яблочная кислота:

Наконец, в восьмой реакции цикла трикарбоновых кислот под влиянием митохондриальной НАД-зависимой малатдегидрогеназы происходит окисление L-малата в оксалоацетат:

Как видно, за один оборот цикла, состоящего из восьми ферментативных реакций, происходит полное окисление ("сгорание") одной молекулы ацетил-КоА. Для непрерывной работы цикла необходимо постоянное поступление в систему ацетил-КоА, а коферменты (НАД и ФАД), перешедшие в восстановленное состояние, должны снова и снова окисляться. Это окисление осуществляется в системе переносчиков электронов (или в цепи дыхательных ферментов), локализованной в митохондриях.

Освобождающаяся в результате окисления ацетил-КоА энергия в значительной мере сосредоточивается в макроэргических фосфатных связях АТФ. Из четырех пар атомов водорода три пары переносятся через НАД на систему транспорта электронов; при этом в расчете на каждую пару в системе биологического окисления образуются три молекулы АТФ (в процессе сопряженного окислительного фосфорилирования), а всего, следовательно, девять молекул АТФ. Одна пара атомов попадает в систему транспорта электронов через ФАД, — в результате образуются 2 молекулы АТФ. В ходе реакций цикла Кребса синтезируется также 1 молекула ГТФ, что равносильно 1 молекуле АТФ. Итак, при окислении ацетил-КоА в цикле Кребса образуется 12 молекул АТФ.

Как уже отмечалось, 1 молекула НАДН2 (3 молекулы АТФ) образуется при окислительном декарбоксилирова-нии пирувата в ацетил-КоА.

Реакции цикла Кребса

Так как при расщеплении одной молекулы глюкозы образуются две молекулы пирувата, то при окислении их до 2 молекул ацетил-КоА и последующих двух оборотов цикла трикарбоновых кислот синтезируется 30 молекул АТФ (следовательно, окисление одной молекулы пирувата до СО2 и Н2O дает 15 молекул АТФ).

К этому надо добавить 2 молекулы АТФ, образующиеся при аэробном гликолизе, и 4 молекулы АТФ, синтезирующихся за счет окисления 2 молекул внемитохондриального НАДН2, которые образуются при окислении 2 молекул глицеральдегид-3-фосфата в дегидрогеназной реакции. Итого получим, что при расщеплении в тканях 1 молекулы глюкозы по уравнению: C6H1206 + 602 -> 6СO2 + 6Н2O синтезируется 36 молекул АТФ, что способствует накоплению в макроэргических фосфатных связях аденозинтрифосфата 36 X 34,5 ~ 1240 кДж (или, по другим данным, 36 Х 38 ~ 1430 кДж) свободной энергии. Другими словами, из всей освобождающейся при аэробном окислении глюкозы свободной энергии (окодо 2840 кДж) до 50% ее аккумулируется в митохондриях в форме, которая может быть использована для выполнения различных физиологических функций. Несомненно, что в энергетическом отношении полное расщепление глюкозы является более эффективным процессом, чем гликолиз. Необходимо отметить, что образовавшиеся в процессе превращения глицеральдегид-3-фосфата 2 молекулы НАДН2 в дальнейшем при окислении дают не 6 молекул АТФ, а только 4. Дело в том, что сами молекулы внемитохондриального НАДН2 не способны проникать через мембрану внутрь митохондрий. Однако отдаваемые ими электроны могут включаться в митохондриальную цепь биологического окисления с помощью так называемого глицерофосфатного челночного механизма (рис. 92). Как видно на рисунке, цитоплазматический НАДН2 сначала реагирует с цитоплазматическим дигидроксиацетонфосфатом, образуя глицерол-3-фосфат. Реакция катализируется НАД-зависимой цитоплазматической глицерол-3-фосфат-дегидрогеназой:

Дигидрооксиацетонфосфат + НАДН2 глицерол-3-фосфат + НАД

Образовавшийся глицерол-3-фосфат легко проникает через митохондриальную мембрану. Внутри митохондрии другая (митохондриальная) глицерол-3-фосфат-дегидрогеназа (флавиновый фермент) снова окисляет глицерол-3-фосфат до дигидроксиацетонфосфата:

Глицерол-З-фосфат + ФАД Дигидроксиацетонфосфат + фАДН2

Восстановленный флавопротеид (фермент — ФАДН2) вводит, на уровне KoQ приобретенные им электроны в цепь биологического окисления и сопряженного с ним окислительного фосфорилирования, а дигидроксиацетонфосфат выходит из митохондрий в цитоплазму и может вновь взаимодействовать с цитоплазматическим НАДН2. Таким образом, пара электронов (из одной молекулы цитоплазматического НАДН2), вводимая в дыхательную цепь с помощью глицерофосфатного челночного механизма, дает не 3 АТФ, а 2 АТФ.

В настоящее время четко установлено, что глицерофосфатный челночный механизм имеет место в клетках печени. Относительно других тканей этот вопрос пока не выяснен.

Цикл Кребса также называется циклом трикарбоновых кислот , так как они образуются в нем в качестве промежуточных продуктов. Представляет собой ферментативный кольцевой конвейер, «работающий» в матриксе митохондрий.

Результатом цикла Кребса является синтез небольшого количества АТФ и образование НАД · H2, который далее направляется на следующий этап клеточного дыхания – дыхательную цепь (окислительное фосфорилирование), расположенную на внутренней мембране митохондрий.

Образовавшаяся в результате гликолиза пировиноградная кислота (пируват) поступает в митохондрии, где она в конечном итоге полностью окисляется, превращаясь в углекислый газ и воду. Сначала это происходит в цикле Кребса, затем при окислительном фосфорилировании.

До цикла Кребса пируват декарбоксилируется и дегидрируется. В результате декарбоксилирования отщепляется молекула CO2, дегидрирование - это отщепление атомов водорода. Они соединяются с НАД.

В результате из пировиноградной кислоты образуется уксусная, которая присоединяется к коферменту А. Получается ацетилкофермент А (ацетил-КоА) – CH3CO~S-КоА, содержащий высокоэнергетическую связь.

Превращение пирувата в ацетил-КоА обеспечивает большой ферментативный комплекс, состоящий из десятков полипептидов, связанным с переносчиками электронов.

Цикл Кребса начинается с гидролиза ацетил-КоА, при котором отщепляется ацетильная группа, содержащая два атома углерода. Далее ацетильная группа включается в цикл трикарбоновых кислот.

Ацетильная группа присоединяется к щавелевоуксусной кислоте, имеющей четыре атома углерода. В результате образуется лимонная кислота, включающая шесть атомов углерода. Энергию для этой реакции поставляет макроэргическая связь ацетил-КоА.

Далее следует цепь реакций, в которых связанная в цикле Кребса ацетильная группа дегидрируются с высвобождением четырех пар атомов водорода и декарбоксилируются с образованием двух молекул CO2. При этом для окисления используется кислород, отщепляемый от двух молекул воды, а не молекулярный . Процесс называется окислительным декарбоксилированием . В конце цикла щавелевоуксусная кислота регенерируется.

Вернемся на этап лимонной кислоты. Ее окисление проходит за ряд ферментативных реакций, при которых образуются изолимонная, щавелевоянтарная и другие кислоты.

В результате этих реакций, на разных стадиях цикла, восстанавливаются три молекулы НАД и одна ФАД, образуется ГТФ (гуанозинтрифосфат), содержащий макроэргическую фосфатную связь, энергия которой впоследствии используется для фосфорилирования АДФ. В результате образуется молекула АТФ.

Лимонная кислота теряет два атома углерода с образованием двух молекул CO2.

В результате ферментативных реакций лимонная кислота превращается в щавелевоуксусную, которая снова может соединиться с ацетил-КоА. Цикл повторяется.

В составе лимонной кислоты присоединившийся остаток ацетил-КоА сгорает с образованием углекислого газа, атомов водорода и электронов. Водород и электроны переносятся на НАД и ФАД, которые являются акцепторами для него.

Окисление одной молекулы ацетил-КоА дает одну молекулу АТФ, четыре атома водорода и две молекулы углекислого газа. То есть углекислый газ, выделяемый при аэробном дыхании, образуется на этапе цикла Кребса . При этом молекулярный кислород (O2) здесь не используется, он необходим лишь на этапе окислительного фосфорилирования.

Атомы водорода присоединяются к НАД или ФАД, в таком виде далее попадают в дыхательную цепь.

Одна молекула глюкозы дает две молекулы пирувата и, следовательно, два ацетил-КоА. Таким образом на одну молекулу глюкозы приходится два оборота цикла трикарбоновых кислот. В общей сложности образуются две молекулы АТФ, четыре CO2, восемь атомов H.

Следует отметить, что не только глюкоза и образующийся из нее пируват поступают в цикл Кребса. В результате расщепления ферментом липазой жиров образуются жирные кислоты, окисление которых также приводит к образованию ацетил-КоА, восстановлению НАД, а также ФАД (флавинадениндинуклеотида).

Если клетка испытывает дефицит углеводов и жиров, то окислению могут подвергаться аминокислоты. При этом образуются ацетил-КоА и органические кислоты, которые далее участвуют в цикле Кребса.

Таким образом неважно, каким был первичный источник энергии. В любом случае образуется ацетил-КоА, представляющий собой универсальное для клетки соединение.

Цикл трикарбоновых кислот (Кребса)

(ЦТК, лимоннокислый цикл, цикл Кребса)

ЦТК, как и реакции митохондриального окисления, протекает в митохондриях. Представляет собой серию реакций, замкнутых в цикл.

Образовавшиеся молекулы ЩУК реагируют с новой молекулой Ацетил-КоА и цикл повторяется вновь от образования цитрата до его превращения в ЩУК.

В реакциях этого цикла участвуют четыре из девяти субстратов МтО.

Происходит серия дегидрогеназных реакций. Из них 3-я, 4-я и 8-я происходят с участием НАД-зависимых дегидрогеназ, и каждая из этих реакций позволяет получить 3 молекулы АТФ. На 6-й стадии происходит ФАД-зависимая дегидрогеназная реакция, которая сопряжена с образованием 2-х молекул АТФ (Р/О = 2).

На 5-й стадии 1 молекула АТФ образуется путем субстратного фосфорилирования.

Итого за 1 оборот ЦТК образуется 12 молекул АТФ.

Смысл ЦТК заключается в том, чтобы остатки уксусной кислоты расщепились с образованием большого количества АТФ. Кроме того, из ацетатных остатков образуется СО2 и Н2О, как конечные продукты обмена веществ.

СО2 образуется в ходе ЦТК дважды:

1. на третьей стадии (окисление изоцитрата)

2. на четвертой стадии (окисление альфа-кетоглутарата).

Если прибавить еще 1 молекулу СО2, которая образуется до начала ЦТК — при превращении ПВК в Ацетил-КоА, то можно говорить о трех молекулах СО2, образующихся при распаде ПВК. Суммарно эти молекулы, образующиеся при распаде ПВК, составляют до 90% углекислоты, которая выводится из организма.

ИТОГОВОЕ УРАВНЕНИЕ ЦТК

БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ ЦТК

ГЛАВНАЯ РОЛЬ ЦТК — ОБРАЗОВАНИЕ БОЛЬШОГО КОЛИЧЕСТВА АТФ.

1. ЦТК — главный источник АТФ. Энергию для образования большого количества АТФ дает полный распад Ацетил-КоА до СО2 и Н2О.

2. ЦТК — это универсальный терминальный этап катаболизма веществ всех классов.

3. ЦТК играет важную роль в процессах анаболизма (промежуточные продукты ЦТК):

— из цитрата → синтез жирных кислот

— из aльфа-кетоглутарата и ЩУК → синтез аминокислот

— из ЩУК → синтез углеводов

— из сукцинил-КоА → синтез гема гемоглобина

АВТОНОМНАЯ САМОРЕГУЛЯЦИЯ ЦТК

В ЦТК два ключевых фермента:

1) цитратсинтаза (1-я реакция)

2) изоцитратдегидрогеназа (3-я реакция)

Оба фермента аллостерически ингибируются избытком АТФ и НАДН2. Изоцитратдегидрогеназа сильно активируется АДФ.

Цикл трикарбоновых кислот

Если АДФ нет, то этот фермент неактивен. В условиях энергетического покоя концентрация АТФ увеличивается, и скорость реакций ЦТК мала — синтез АТФ уменьшается.

Изоцитратдегидрогеназа ингибируется АТФ намного сильнее, чем цитратсинтаза, поэтому в условиях энергетического покоя повышается концентрация цитрата, и он выходит в цитоплазму по градиенту концентраций путем облегченной диффузии. В цитоплазме цитрат превращается в Ацетил-КоА, который участвует в синтезе жирных кислот.

Современные классификации сердечно сосудистой системы
Скорость кровотока, развитие сердца
Тромбоцитопеническая пурпура
Транспорт газов кровью, состав плазмы
Фибринолиз и свёртывание крови
Состав, свойства компонентов плазмы крови
Реакция коагглютинации, компенсации, Кумбса, оседания, пассивной гемагглютинации

Занятие № 12. «Цикл трикарбоновых кислот»

Цель занятия : изучить механизм некоторых реакций цикла Кребса. Освоить метод количественного определения пировиноградной кислоты в моче.

ВОПРОСЫ К КОНТРОЛЬНОЙ РАБОТЕ:

1. Окислительное декарбоксилирование пирувата как предварительный этап цикла лимонной кислоты. Перечислите витамины и коферменты, задействованные в этом процессе.

2. Реакции цикла лимонной кислоты. Что определяет общее направление реакций в цикле? В какой части клетки протекает этот процесс? Почему?

3. Какие коферменты и витамины участвуют в цикле Кребса? Объясните, как они работают, с указанием конкретных реакций.

4. Расскажите о реакциях цикла Кребса, в результате которых образуются НAДH2 и ФAДН2. Какова дальнейшая судьба этих соединений?

5. Функции цикла трикарбоновых кислот. Объясните, какое значение для цикла лимонной кислоты имеет анаплеротическая реакция?

6. Энергетический выход цикла трикарбоновых кислот. Сколько молекул ATФ образуется в ходе оборота через цикл одной молекулы лимонной кислоты? Все ли молекулы ATФ, образующиеся при полном окислении активного ацетила, синтезируются путем окислительного фосфорилирования. Как регулируется скорость цикла?

Экспериментальная работа.

Одним из методов количественного анализа в биохимии является фотокалориметрия. Метод основан на измерении оптической плотности окрашенных растворов, которые получают при взаимодействии субстрата с различными химическими агентами. Концентрация субстрата пропорциональна степени окрашивания раствора.

Перед началом лабораторных опытов ознакомьтесь с устройством ФЭК и правилами работы на нем.

Опыт 1. Определение концентрации пировиноградной кислоты (ПВК) в моче.

2. Набор пипеток.

3. Фотоколориметр.

4. Кюветы, 0,5 см.

Реактивы. 1. Дистиллированная вода.

3. Гидроксид натрия, 10%-ный раствор.

4. 2,4-динитрофенилгидразин, раствор.

ПВК крови конденсируется с 2,4-динитрофинилгидразином с образованием гидразона, который в щелочной среде дает коричнево-красный цвет раствора. По интенсивности его окраски судят о содержании ПВК.

1. В три пробирки внесите реактивы согласно следующей таблице:

2. Содержимое пробирок на 15 мин поместите в темное место при комнатной температуре.

До 10% энергии в клетке образуется из аминокислот

В каждую пробирку внесите по 1 мл 10%-го раствора NаOH и через пять минут измерьте оптическую плотность при длине волны 620 нм опытной пробы против контрольной (О) и калибровочной пробы против контрольной (К).

4. Расчет проведите и по готовому калибровочному графику.

= мг/сутки

Для пересчета содержания ПВК (в мг) в единицы количества вещества (мкмоль) надо умножить соответствующие величины на 11,4 (коэффициент пересчета).

Норма для человека: 10-25 мг/сутки или 114-284 мкмоль/сутки пировиноградной кислоты.

Сравните полученные значения с нормальными величинами. Каковы причины повышенного содержания пировиноградной кислоты в сыворотке крови и моче?

Опыт 2. Определение активности сукцинатдегидрогеназы мышц.

Приборы. 1. Штатив с пробирками.

2. Набор пипеток.

3. Ступка с пестиком.

4. Водяная баня.

Реактивы. 1. Мышечная ткань курицы или кролика.

2. Янтарная кислота, 5%-ный раствор.

3. Метиленовая синь, 0,01%-ный раствор.

4. Растительное масло.

5. Стеклянный песок.

1. Взвесьте 10 г мышечной ткани и разотрите в ступке со стеклянным песком.

2. Полученный гомогенат промойте несколько раз на марле физраствором, для удаления растворимых веществ.

3. Полученную смесь разлейте по 5 мл в три пронумерованные пробирки.

4. Первую пробирку погрузите на 5 минут в кипящую водяную баню, после чего охладите ее до комнатной температуры.

5. В пробирку №1 и №2 добавьте 3 мл 5%-ной янтарной кислоты и 3 капли раствора метиленового синего (до появления голубого окрашивания).

6. В пробирку №3 добавьте 0,5 мл дистиллированной воды и 3 капли раствора метиленового синего (до появления голубого окрашивания).

7. Затем во все пробирки налейте немного масла для изоляции смеси от кислорода воздуха.

8. Все пробирки инкубируйте в водяной бане (40оС) в течение 10 минут.

Дайте объяснение наблюдаемым явлениям. Какова функция метиленовой сини в данном эксперименте? На какое соединение эта функция возлагается в живой клетке?

Дата выполнения ________ Балл ____ Подпись преподавателя ____________

Предыдущая123456789101112Следующая

Не каждый из нас знает о таком явлении как цикл Кребса. Что это такое? Простым языком это явление можно охарактеризовать как химические реакции в организме человека, в результате которых происходит выработка аденозинтрифосфата.

Данное явление было исследовано Гансом Кребсом, немецким ученым в 30-х годах 20-го столетия. В это время он со своим помощником изучали циркуляцию мочевины. В период, когда была Вторая мировая война, ученый перебрался жить в Англию, где его исследования показали, что некоторые кислоты могут катализировать процессы в организме человека. За данное исследование ученому вручили Нобелевскую премию.

Что такое цикл Кребса?

Энергия в человеческом организме зависит от глюкозы, это вещество, содержащееся в крови. Чтобы трансформировать глюкозу в энергию, в клетках организма содержатся митохондрии. Когда весь процесс трансформации проходит, из глюкозы получается вещество аденозинтрифосфат, сокращенно именующийся АТФ. Именно АТФ является главным источником энергии в человеческом организме.

Структура получаемого вещества дает ему возможность встраиваться в белок, чтобы обеспечивать необходимым количеством энергии органы и системы человека. Сама глюкоза напрямую не может трансформироваться в АТФ, поэтому для данного процесса требуются сложные механизмы. Именно таким механизмом и является цикл Кребса.

Если простым языком объяснять данный процесс, то можно сказать, что цикл Кребса – это цепь химических реакций, которые происходят в нашем организме, точнее в каждой его клеточке. Этот процесс представляет собой цикл, и называется он так, потому что происходит бесконечно. Когда цикл Кребса проходит полностью, в результате производиться вещество аденозинтрифосфат. Это энергетическая основа для того, чтобы организм человека мог функционировать.

По иному данный цикл называют дыханием клеток. Второе название процесс получил из-за того, что все его стадии требуют присутствия кислорода. Во время данного процесса происходит производство аминокислот и углеводов. По этому можно судить, что цикл выполняет еще одну функцию – строительную.

Для того чтобы вышеописанный процесс мог реализоваться, в организме человека должно быть достаточно микроэлементов, их должно быть не менее ста. В число необходимых составляющих входят и витамины. Если микроэлементов недостаточно, не хватает хотя бы одного из них, то цикл не будет настолько эффективным. А неэффективность цикла Кребса приводит к тому, что нарушается метаболизм в организме.

Регуляция цикла

Регуляция такого явления как цикл Кребса имеет большое влияние на работу организма человека. Она важна для того, чтобы он мог приспосабливаться к тому, как меняются условия внешней среды, а также к тому, как изменяются физиологические системы. Есть факторы регуляторные, которые подразделяются на несколько групп:

  • регуляция, которая происходит с углесодержащими субстратами, а также продуктами, которые являются промежуточными в самом цикле;
  • регуляция с помощью адениловых нуклеотидов, которые могут быть как коферментами, так и продуктами конечного процесса.

В начале необходимо разобрать в том, что собой представляют функции продуктов при прохождении цикла, являющимися промежуточными. Обратим внимание на роль оксалоацетата. Это очень важный элемент, поскольку, когда его тканевые запасы уменьшаются, цикл перестает повторяться.

При этом истощается очень важный источник энергии организма, и последствия этого для клеток являются ужасными. Последствия пагубные еще и потому, что нет достаточного количества оксалоацетата, который нужен для того, чтобы действовал ацетил-КоА. Ацетил-КоА образуется во время катаболизма углеводов и жиров. При этом скапливаются двухуглеродные фрагменты. Когда они конденсируются, то в тканях скапливается избыточное количество ацетоацетата. Помимо него накапливаются и иные похожие тела. При этом в человеческом организме развивается кетоз, представляющий собой патологическое состояние.

В каждом случае, когда происходит образование ацетил-КоА, и его много, то оксалоацетата не хватает для того, чтобы его конденсировать. При каждом из этих циклов происходит кетоз. Проще можно сказать, что кетоз провоцирует недостаток оксалоацетата, если его уровень ниже количества ацетил-КоА.

При возникновении кетоза в организме происходит нарушения между процессами окисления жиров и катаболизмом углеводов. Данное явление обусловлено тем, что последние могут производить оксалоцеатат при карбоксилировании пирувата. Эта реакция проходит процесс катализации. Катализируется она в митохондриях биотиновым ферментом. Это основной механизм, в результате которого в организме вырабатываются углеводы. Так образуется СО2, который в дальнейшем принимает участие в цикле Кребса. Он также обеспечивает процесс глюконеогенеза фрагментами, которые содержат углеводы.

Реакции данного цикла ведут к тому, что образуется оксалоацетат. Его регуляция происходит как обратная связь, и это обеспечивается тем, что оксалоацетат действует как конкурентный ингибитор сукцинатдегидрогеназы. При этом, фермент имеет значение регулятора в данном цикле.

Подводя итог, следует сказать, что цикл Кребса представляет собой процессы в клетках организма, способные вырабатывать энергию для его нормального функционирования. Если данный процесс происходит неправильно, то это приводит к патологическому состоянию и нарушенному обмену веществ в организме человека.

Видео